Non-commutative Valuation Rings and Their Global Theories

2007

The Joint Graduate School in the Science of School Education Hyogo University of Teacher Education

Department of Science School Education (Algebra)

Santi Irawati

ACKNOWLEDGEMENT

I would like to express my deep gratitude to my advisor, Prof. Dr. Hidetoshi Marubayashi for his guidance during my study. He gave me invaluable ideas which made this dissertation possible.

I would like to thank Prof. Dr. Sri Wahyuni, as my home advisor, for her guidance and helpful support in getting the opportunity for studying abroad.

I also would like to thank JSPS RONPAKU program for the financial support which gave me a chance to study ring theory under good mathematicians in Japan.

I am grateful to the Professors and staffs of Naruto University of Education especially of the department of Mathematics, for their care and hospitality.

CONTENTS

Introduction 1
CHAPTER 1
Some elementary properties 5
1.1. Some elementary properties of orders 5
1.2. Some elementary properties of Dubrovin valuation rings 7
1.3. Some elementary properties of Prüfer orders 11
CHAPTER 2
On \boldsymbol{R}-ideals of a Dubrovin valuation ring \boldsymbol{R} 13
2.1. Structure of v-ideals 13
2.2. $\quad R$-ideals of a Dubrovin valuation ring R 16
CHAPTER 3
A characterization of fully bounded Dubrovin valuation rings 22
3.1. Fully bounded Dubrovin valuation rings 23
3.2. Examples 28
CHAPTER 4
Non-commutative \boldsymbol{v}-Bezout rings 30
4.1. Non- commutative v-Bezout rings 30
4.2. Examples 33
CHAPTER 5
Overrings of non-commutative Prüfer rings satisfying a polynomial identity 36
5.1. Overrings of PI Prüfer rings 36
5.2. Prime ideals of overrings of a PI Prüfer ring 39
References 41

Introduction

During the last twenty years the theory of non-commutative valuation rings has been developed by many authors for different reasons. The main progress in the general theory has been made after N. I. Dubrovin introduced his new type of valuation rings which are called Dubrovin valuation rings. These rings are not only defined for division rings but also for simple Artinian rings especially for central simple algebras. As we know, there are three types of non-commutative valuation rings, which are called total valuation rings, invariant valuation rings and Dubrovin valuation rings.

Let K be a division ring. A subring V of K is called total valuation ring of K if for any non-zero element $a \in K$, either $a \in V$ or $a^{-1} \in V$. A total valuation ring V of a division ring K is called an invariant valuation ring if $a V=V a$ for all $a \in K$. An order R in a simple Artinian ring Q is called a Dubrovin valuation ring of Q if R is Bezout and $R / J(R)$ is simple Artinian, where $J(R)$ is the Jacobson radical of R. We see that every invariant valuation ring and every total valuation ring V is clearly a Dubrovin valuation ring. However, the converse is not necessarily true.

In this thesis, we study about non-commutative valuation rings in particular about Dubrovin valuation rings and their global theories, say Prüfer rings. Moreover, we give some examples of v-Bezout rings which are the generalization of commutative GCD-domains.

In Chapter 1, we give some elementary properties of non-commutative valuation rings, which are used in the next Chapters. We refer to [MMU] for details concerning with orders, Dubrovin valuation rings, Prüfer orders and primary ideals.

Let R be an order in a ring Q. A right R-submodule I of Q is called a right R ideal of Q if (i) $I \cap U(Q) \neq \varnothing$, where $U(Q)$ is the unit group of Q and (ii) there exists c $\in U(Q)$ such that $c I \subseteq R$. A left R-ideal of Q is defined similarly. A right and left R ideal is called an R-ideal. For a right R-ideal I of Q , we set $O_{r}(I)=\{q \in Q \mid I q \subseteq I\}$,
the right order of I and $O_{l}(I)=\{q \in Q \mid q I \subseteq I\}$, the lef t order of I. An element c in Q is called a right stabilizing element of R if $c R$ is an R-ideal and we denote by r -st $(R)=$ $\{c \in Q \mid c R$ is right stabilizing $\}$. We say that c is stabilizing if $c R=R c$ and denote by $\operatorname{st}(R)=\{c \in Q \mid c$ is stabilizing $\}$. For any ideal I of a ring R, we denote by $\sqrt{I}=$ $\cap\{P \mid P \in \operatorname{Spec}(R)$ with $P \supseteq I\}$ the prime radical of I which is a semi-prime ideal. An ideal A of R is called right \sqrt{I}-primary if $a R b \subseteq A$, where $a, b \in R$, implies either $a \in A$ or $b \in \sqrt{I}$. Similarly, left primary ideals are defined. In [BMU], they have described all right primary ideals of R.

In Chapter 2, we investigate the structure of all R-ideals by usage of stabilizing elements and primary ideals by using some results from [BMU]. If I is an R-ideal and I is not finitely generated as a right R-ideal such that $O_{r}(I)=S=O_{l}(I)$ and suppose that $J(S)$ is Archimedean, it is proved that $I=c A$ for some $c \in \operatorname{st}(S)$ and A, a right and left $J(S)$-primary ideal (see Theorem 2.2.3). In the case Q is finite dimensional over its center, we obtain: (1) If I is finitely generated as a right R-ideal, then $I=c R=R c$ for some $c \in \operatorname{st}(R)$, (2) If I is not finitely generated as a right R-ideal such that $J(S)$ is Archimedean, then $I=c A=A c$ for some $c \in \operatorname{st}(S)$ and A, a right and left $J(S)$-primary ideal, (3) If I is not finitely generated as a right R-ideal such that $J(S)$ is limit prime, then I is one of the following three; $I=c S=S c$ for some $c \in \operatorname{st}(S), I=c J(R)=J(R) c$ for some $c \in \operatorname{st}(R)$ and $I=\cap c_{\lambda} R_{\lambda}$ for some $c_{\lambda} \in \operatorname{st}\left(R_{\lambda}\right)$, where $R_{\lambda}=R_{P_{\lambda}}$ and P_{λ} runs over all Archimedean prime ideals with $P_{\lambda} \subset J(S)$ (see Proposition 2.2.4). Furthermore, a counter example is given to show that Proposition 2.2.2 (2)(a) is not necessarily held if Q is infinite dimensional over its center.

A ring is called right (left) bounded if any essential right (left) ideal contains a non-zero (two-sided) ideal. A ring is just called bounded if it is both right bounded and left bounded. Let S be a ring. We say that S is $f u l l y$ bounded if S / P is bounded for any prime ideal P of S. Let R be a Dubrovin valuation ring in a simple Artinian ring Q and let $P \in \mathrm{G}-\operatorname{Spec}(R)$, the set of all Goldie prime ideals of R, with $P \neq J(R)$ and set $P_{1}=$
$\cap\left\{P_{\lambda} \mid P_{\lambda} \in \mathrm{G}-\operatorname{Spec}(R)\right.$ with $\left.P_{\lambda} \supset P\right\}$. Then, in [BMO,(6)], they have shown that the following four cases only occur:
(1) P is lower limit, i.e., $P=P_{1}$. Otherwise, $P_{1} \supset P$ is a prime segment.
(2) $P_{1} \supset P$ is Archimedean.
(3) $\quad P_{1} \supset P$ is simple.
(4) $\quad P_{1} \supset P$ is exceptional, i.e., there exists a non-Goldie prime ideal C such that $P_{1} \supset$ $C \supset P$.

In Chapter 3, we investigate those results under an additional condition that R is fully bounded. It is shown that for a Dubrovin valuation ring R of a simple Artinian ring Q, R is fully bounded iff (1) and (2) only hold.

Moreover, for any regular element c in $J(R)$, we define $P(c)=\cap\left\{P_{\lambda} \mid P_{\lambda} \in\right.$ G$\operatorname{Spec}(R)$ with $c \in P_{\lambda}$, a Goldie prime ideal. R is called locally invariant if $c P(c)=$ $P(c) c$ for any regular element c in $J(R)$. Let R be a Dubrovin valuation ring of a simple Artinian ring Q. It is shown that R is fully bounded if and only if it is locally invariant.

If Q is of finite dimensional over its center, then R is always fully bounded. In the end of this chapter, we give several examples of fully bounded Dubrovin valuation rings of Q with infinite dimension over its center.

In Chapter 4, we study non-commutative GCD-domains. An Ore domain S is called right (left) v-Bezout if I_{v} is a principal for any finitely generated right ideal I of S. S is said to be v-Bezout if it is right v-Bezout as well as left v-Bezout. This ring is a noncommutative version of a commutative GCD-domain. In the commutative rings, [Gi] proved if R is a GCD domain, so is $R[x]$. Inspired by [Gi], we prove if V is a total
 the set of non-negative rational numbers, $\sigma: \mathrm{Q}_{0} \rightarrow \operatorname{Aut}(V)$ is defined by $\sigma(r+s)=$
$\sigma(\mathrm{r}) \cdot \sigma(s)$ for any $r, s \in \mathrm{Q}_{0}$, and the multiplication in R is defined by $x^{r} a=\sigma(r)(\mathrm{a})$ x^{r} for any $a \in V$ and $r \in \mathrm{Q}_{0}$.

In Chapter 5, we study prime ideals of any overring of a non-commutative PI Prüfer ring. We define $I^{-1}=\{q \in Q \mid I q I \subseteq I\}$), the inverse of I. Following [AD], R is called right Priffer if for every finitely generated right R-ideal $I, I^{-1} I=R, I I^{-1}=$ $O_{l}(I)$. Left Priffer rings are defined similarly. In $\left[\mathrm{D}_{2}\right]$, he proved that any prime ideal of a PI Prüfer ring is localizable. In the case when prime rings satisfying a PI, [Mo] studied PI Pruifer rings under some conditions. By using some results in $\left[\mathrm{D}_{2}\right]$ and $[\mathrm{Mo}]$, we shall prove if S is an overring of a prime Goldie ring R and suppose that R is Prüfer satisfying a polynomial identity, then $\operatorname{Spec}(S)=\{P S \mid P \in \operatorname{Spec}(R)$ with $P S \subset S\}$ and $S=\cap R_{P}$, where P runs over all $P \in \operatorname{Spec}(R)$ with $P S \subset S$.

CHAPTER 1

Some elementary properties

In this chapter, we give some elementary properties of orders, non-commutative Dubrovin valuation rings and Prüfer orders. We refer to [MMU] and [MR] for details concerning with orders.

1.1. Some elementary properties of orders

In this section, we give some definitions, notations and elementary properties of orders. For a ring R, we denote by $U(R)$ the set of all units of R and by $C_{R}(0)$ the set of all regular elements (that is, non-zero divisors) of R.

Let C be a multiplicatively closed subset of a ring R. We say that R satisfies the right Ore condition with respect to C or that C is called a right Ore set of R if, for any $a \in R$ and $c \in C$, there exist $b \in R$ and $d \in C$ such that $a d=c b$. If $C \subseteq C_{R}(0)$, then it is called a regular right Ore set of R. Similarly, we can define a (regular) left Ore set of R. If C is a (regular) right and left Ore set of R, then it is simply called (regular) Ore set of R.

Let C be a regular right Ore set of a ring R. An overring T of R is called the right quotient ring of R with respect to C if
(i) $c \in U(T)$ for any $c \in C$ and
(ii) for any $q \in T$, there exist $a \in R$ and $c \in C$ such that $q=a c^{-1}$.

We denote the ring T by R_{C}. We note that for a multiplicative subset C of R with $C \subseteq$ $C_{R}(0)$, the right quotient ring R_{C} of R with respect to C exists if and only if C is a regular right Ore set of R ([MR, Chap. 2]).

A subring R of a ring Q is called a right order in Q if Q is the right quotient ring of R with respect to $C_{R}(0)$, and sometimes we denote the ring Q by $Q(R)$. In particular, R is a right order in Q if and only if $C_{R}(0)$ is a right Ore set of R. Similarly, we can define a lef t order in Q and a ring which is both a right and left order in Q is called an order in Q.

Let R be a ring and let M be a right R-module. An R-submodule L of M is called essential if $L \cap N \neq 0$ for any non-zero R-submodule N of M. By Zorn's lemma, we note that for any R-submodule L of M, there exists an R-submodule L ' of M such that L $\cap L^{\prime}=0$ and $L \oplus L^{\prime}$ is essential in M ([MR, (2.2.2(v))]). If a right ideal I of R is an essential R-submodule of R, then I is called an essential right ideal. A right R-module U is said to be unif orm if, for any non-zero R-submodule U_{1} and U_{2} of $U, U_{1} \cap U_{2} \neq 0$, that is, any non-zero R-submodule of U is an essential R-submodule of U.

A right R-module M is said to have finite Goldie dimension if it contains no infinite direct sum of non-zero R-submodules. For any subset X of R, we set $r_{R}(X)=$ $\{a \in R \mid X a=0\}$ and call it the right annihilator of X. Sometimes we denote $r_{R}(X)$ by $r(X)$. The lef t annihilator of X is defined similarly. A ring R is called a right Goldie ring if R satisfies the ascending chain condition (acc) on right annihilators and has finite Goldie dimension as a right R-module. A lef t Goldie ring is defined similarly and R is called a Goldie ring if R is a right and left Goldie ring. We have the following property ([MMU, (1.1)]).

Theorem 1.1.1. Let R be a ring. Then the following is equivalent:
(i) R is a (semi)-prime right Goldie ring.
(ii) R has a right quotient ring Q which is (semi)-simple Artinian, that is, R is a right order in a (semi)-simple Artinian Q.

Let R be an order in a ring Q. A right R-submodule I of Q is called a right R ideal of Q if $I \cap U(Q) \neq \varnothing$ and there exists $c \in U(Q)$ such that $c I \subseteq R$. A right R-ideal I of Q is said to be integral if $I \subseteq R$. Similarly, we can define a lef t-ideal of Q. A right and left R-ideal is called an R-ideal.

Let R an order in a ring Q. For any subsets X and Y of Q, we set $(X: Y)_{l}=$ $\left\{q \in Q \mid q Y \subseteq X,(X: Y)_{r}=\{q \in Q \mid Y q \subseteq X\}\right.$ and $X^{-1}=\{q \in Q \mid X q X \subseteq X\}$. For a right R-ideal I of Q, we set $O_{r}(I)=(I: I)_{r}=\{q \in Q \mid I q \subseteq I\}$ and we called it the right order of I. The left order of I is defined similarly. A right and left R-ideal is called an R ideal. Then we have the following lemma ([MMU, 1.2]).

Lemma 1.1.2. If R is an order in a ring Q and I is a right R-ideal of Q, then
(1) $O_{r}(I)$ and $O_{l}(I)$ are orders in Q,
(2) I is a left $O_{l}(I)$-ideal and a right $O_{r}(I)$-ideal, and
(3) $(R: I)_{l}$ is a lef t-ideal and a right $O_{l}(I)$-ideal.

1.2. Some elementary properties of Dubrovin valuation rings

In this section, we give some elementary characterizations of Dubrovin valuation rings and its ideal theory.

Let D be a division ring, $(G,+)$ be a totally ordered group and let $U(D)$ be the set of all units in D. A surjective mapping $v: U(D) \rightarrow G$ is called a valuation on D if it is satisfying ([Sc]):
(1) For any $a, b \in D, v(a b)=v(a)+v(b)$.
(2) $v(a+b) \geq \min \{v(a), v(b)\}$ if $b \neq-a$.

If v is a valuation on D, then $V=\{a \in U(D) \mid v(a) \geq 0\} \cup\{0\}$. Then V is an invariant valuation ring. In this case G is called value group of V.

A ring R is called right Bezout if any finitely generated right ideal of R is principal. The left Bezout is defined similarly. A ring R is called Bezout if it is right and left Bezout.

Let R be a subring of a ring $S . R$ is called a right n-chain ring in S if for any n^{+1} elements $a_{0}, a_{1}, \ldots, a_{n}$ in S , there is an i such that $a_{i} \in \sum_{k \neq i} a_{k} R$. A right n-chain ring in itself is called a right n-chain ring. A left n-chain ring is defined similarly. An n chain ring is a right and left n-chain ring. Then we have the following properties ([MMU, (5.8), (5.11) and (5.12)]).

Lemma 1.2.1. Let R be a semi-simple ring, that is, $J(R)=0$. Then R is Artinian if and only $\mathfrak{f} R$ is a right n-chain ringfor some n.

Theorem 1.2.2. Let R be a subring of a simple Artinian ring Q. Then the following conditions are equivalent:
(1) R is a Dubrovin valuation ring of Q.
(2) R is a local semi-hereditary order in Q.
(3) R is a local Bezout order in Q.
(4) R is a local n-chain ring in Qfor some n with $d(\bar{R}) \geq n$, where $\bar{R}=R J J(R)$.

Corollary 1.2.3. Let R be a Dubrovin valuation ring of Q and let P be a prime ideal of R. If R / P is a prime Goldie ring, then R / P is also a Dubrovin valuation ring of its classical quotient ring.

Lemma 1.2.4. ([MMU, (6.3)]). Let R be a Dubrovin valuation ring of Q and let $T_{2} \subseteq$ T_{1} be right R-submodules of Q such that (1) T_{1} is regular and (2) there exists a subring S of $O_{l}\left(T_{2}\right)=\left\{q \in Q \mid q T_{2} \subseteq T_{2}\right\}$ such that for any regular elements t_{1} and $t_{2} \in T_{1}$ there is a regular element $t \in T_{1}$ with $S t_{1}+S t_{2} \subseteq S t$. Then either $T_{1}=T_{2}$ or $t_{1} J(R) \supseteq T_{2}$ for some regular element $t_{1} \in T_{1}$.

By using Lemma 1.2.4, we have the following Proposition ([MMU, (6.4)])

Proposition 1.2.5. Let R be a Dubrovin valuation ring of Q and let S be a Bezout order in Q. Then the set of regular left S - and right R-submodules of Q is linearly ordered by inclusion. In particular, the set of all R-ideals of Q is linearly ordered by inclusion.

Let P be a prime ideal of a ring S. If $C(P)=\{c \in S \mid c:$ regular $\bmod P\}$ is a regular Ore set of S then the quotient ring $S_{C(P)}$ of S with respect to $C(P)$ is denoted by S_{P} and is called the localization of S at P. Let R be a Dubrovin valuation ring of a simple Artinian ring Q and let S be an overring of R. Then $J(S) \subseteq J(R)$ and S is local ([MMU, (5.3)]). Combining Lemma 1.2.1 and Theorem 1.2.2, we have ([MMU, (6.6)])

Theorem 1.2.6. Let R be a Dubrovin valuation ring of Q and let S be an overring of R.
(1) $\tilde{R}=R / J(S)$ is a Dubrovin valuation ring of $\bar{S}=S / J(S)$.
(2) S is a Dubrovin valuation ring of Q and $J(S)$ is aprime ideal of R.
(3) $C_{R}(J(S))$ is a regular Ore set of R and $S=R_{J(S)}$.

The converse of Theorem 1.2.6 (1) also holds ([MMU, (6.16)]) as following.

Proposition 1.2.7. Let S be a Dubrovin valuation ring of \dot{Q} and let \tilde{R} be a Dubrovin valuation ring of $\bar{S}=S / J(S)$. Then the set $R=\{r \in S \mid[r+J(S)] \in \tilde{R}\}$ is a Dubrovin valuation ring of Q.

Let R be a Dubrovin valuation ring of Q. Then $O_{r}(J(R))=O_{l}(J(R))=R$ by [MMU, (6.8)], which implies the following Lemmas ([MMU, (6.9) and (6.10)]).

Lemma 1.2.8. Let R be a Dubrovin valuation ring of Q, A be an R-ideal of Q and S $=O_{r}(A)$. Then thefollowing are equivalent:
(1) A isprincipal as a right S-ideal.
(2) $A^{-1} A=S$.
(3) $A \supset A J(S)$.

Lemma 1.2.9. Let R be a Dubrovin valuation ring of Q and let A be an R-ideal of Q. Then $O_{r}(A)=O_{l}\left(A^{-1}\right)$ and $O_{l}(A)=O_{r}\left(A^{-1}\right)$.

Combining Lemma 1.2.4 and Lemma 1.2.9, we have

Proposition 1.2.10 ([MMU, (6.13)]). Let R be a Dubrovin valuation ring of Q and let A be an R-ideal of Q. Set $S=O_{r}(A)$ and $T=O_{l}(A)$.
(1) $A_{v}=\left(S:(S: A)_{l}\right)_{r}=A^{*}={ }^{*} A=\left(T:(T: A)_{r}\right)_{l}$ and $A^{*}=A^{-1-1}$.
(2) $A^{* *}=A^{*}$ and $\left(A^{-1}\right)^{*}=A^{-1}$.
(3) If A is not a principal right S-ideal, then $A^{-1} A=J(S)$ and $J(S)$ is not a principal right S-ideal.
(4) If $A \subset A^{*}$, then $A^{*}=c S$ and $A=c J(S)$ for some regular element $c \in A^{*}$. In particular, $A=A^{*} J(S)$.

Let I be a right R-ideal and let $S=O_{r}(I)$. We define $I^{*}=\cap c S$, where c runs over all elements in Q with $c S \supseteq I$. Similarly, for any left R-ideal L with $T=O_{l}(L)$, we define ${ }^{*} L=\cap T \mathcal{c}$, where c runs over all elements in Q with $T c \supseteq L$. The following proposition is established by a standard method ([MMU, (6.11)]).

Proposition 1.2.11. Let R be a Dubrovin valuation ring of Q and let I be a right R ideal of Q.
(1) $I \subseteq I^{*}$.
(2) $\left(I^{*}\right)^{*}=I^{*}$.
(3) $(c l)^{*}=c I^{*}$ for any $c \in U(Q)$.
(4) $(c I)^{-1}=I^{-1} c^{-1}$ for any $c \in U(Q)$.

Let R be a Dubrovin valuation ring of Q. Then by [MMU, (6.8)], $O_{r}(J(R))=$ $O_{l}(J(R))=R$. If $J(R)$ is not principal as $O_{r}(J(R))$-ideal, then $J(R)^{*}=R=J(R)^{-1}$ by [MMU, (6.12)].

A prime ideal P of a ring R is called Goldie if R / P is a Goldie ring. By [MMU, (6.8)], if R is a Dubrovin valuation ring of a simple Artinian ring Q and S is an overring of R then $J(S)$ is a Goldie prime ideal of R , which is localizable and R_{P} is a Dubrovin valuation ring with $J\left(R_{P}\right) \cap R=P$ ([MMU, (14.5)]). We denote by $\mathcal{B}(R)$ the set of all overrings of a ring $R, \operatorname{Spec}(R)$ the set of all prime ideals of R, and $\mathrm{G}-\operatorname{Spec}(R)$ the set of all Goldie prime ideals of R. By [MMU, (6.7) and (14.5)], we have the following correspondence

Proposition 1.2.12. Let R be a Dubrovin valuation ring of a simple Artinian ring Q. Then there exists a one-to-one correspondence between $\mathcal{B}(R)$ and $\mathrm{G}-\operatorname{Spec}(R)$.

Let R be a Dubrovin valuation ring of a simple Artinian ring Q. Then the intersection of Goldie prime ideals of R is also a Goldie prime ideal ([BMO, (1)])

Proposition 1.2.13. Let R be a Dubrovin valuation ring of a simple Artinian ring Q and let $P_{i} \in \mathrm{G}-\operatorname{Spec}(R)$. Then $P=\cap P_{i}$ is also in $\mathrm{G}-\operatorname{Spec}(R)$.

Let R be be a Dubrovin valuation ring of a division ring K. The following Lemma ([MMU, (8.13)]) gives a criterion of R to be a total valuation ring.

Lemma 1.2.14. Let R be be a Dubrovin valuation ring of a division ring K. Then R is total if and only if $\bar{R}=R / J(R)$ is a division ring.

1.3. Some elementary properties of Prüfer orders

In this section, we give some properties of Prüfer orders. Let Q be a semi-simple Artinian ring and let R be an order in Q, that is, R is a semi-prime Goldie ring. R is called a right (left) Prif er order in Q if any finitely generated right (left) R-ideal is a progenerator of Mod- R (R-Mod), that is, projective and a generator of Mod- R ($R-$ Mod). A Prif er order is a right and left Prüfer order. By [MMU, (2.5)], a right Prüfer order in a semi-simple Artinian ring is left Prüfer order.

Let R be a Prüfer order in a semi-simple Artinian ring Q and let S be an overring of R, that is, $R \subseteq S \subseteq Q$. It is clear that S is an order in Q. It is proved in ([MMU, (2.6)]) that S is also Prüfer.

Proposition 1.3.1. An overring of a Prif er order in a semi-simple Artinian ring is also a Priff er order.

Let A be an ideal of a Prüfer order R in a simple Artinian ring Q. Then any element of $C(A)=\{c \in R \mid c$ is regular modulo $A\}$ is regular ([MMU, (22.6)]). In the
case A is maximal such that R / A is a semi-simple Artinian ring, then $C(A)$ is an Ore set of R and R_{A} is a Dubrovin valuation ring of Q ([MMU, (22.7)]).

Proposition 1.3.2. Let A be an ideal of a Prifer order in a simple Artinian ring Q. Then $C(A)$ consists of regular elements of R.

Theorem 1.3.3. Let R be a Prifer order in a simple Artinian ring Q and let A be an ideal of R such that R / A is a semi-simple Artinian ring.
(1) $C(A)$ is a regular Ore set of R.
(2) If A is a maximal ideal of R, then R_{A} is a Dubrovin valuation ring of Q.

Dubrovin has proved the following property of Prüfer order $\left(\left[\mathrm{D}_{2},(4)\right]\right)$

Proposition 1.3.4. Let R be a Priffer order in a simple Artinian ring Q and let S be a Dubrovin valuation ring of Q containing R. Then $P=J(S) \cap R$ is a prime ideal of R such that $C(P)$ is a regular Ore set of R and $S=R_{P}$.

The following Proposition is proved by [Mo, (3.1)]

Proposition 1.3.5. Suppose S is a Dubrovin valuation ring and \mathcal{R} is an order in $\bar{S}=$ $S / J(S)$. Then $R=\{r \in S \mid r+J(S) \in \mathcal{R}\}$ is Prüf er if and only if \mathcal{R} is Prif er.

CHAPTER 2

On R-ideals of a Dubrovin valuation ring R

Throughout this Chapter, we denote by R a Dubrovin valuation ring in a simple Artinian ring Q. We use " \subset " or " \supset " for proper inclusion and " \subseteq " or " \supseteq " for inclusion. For any subset X and Y of Q, we set $(X: Y)_{l}=\{q \in Q \mid q Y \subseteq X\}$ and $(X: Y)_{r}=$ $\{q \in Q \mid Y q \subseteq X\}$. For an R-ideal I, we set $I_{v}=\left(R:(R: I)_{l}\right)_{r}$ and ${ }_{v} I=\left(R:(R: I)_{r}\right)_{l}$. I is called a v-ideal if $I_{v}=I={ }_{v} I$.

In Section 2.1, we give some structures of v-ideals related to the properties of Jacobson radical.

In Section 2.2, it is described the structures of all R - ideals by usage of stabilizing elements and primary ideals.

We refer to [MMU] and [BMU] for details concerning with Dubrovin valuation rings and primary ideals.

2.1. Structure of \boldsymbol{v}-ideals

For an R-ideal I, we set $O_{r}(I)=\{q \in Q \mid I q \subseteq I\}$, the right order of I and $O_{l}(I)=\{q \in Q \mid q I \subseteq I\}$, the left order of I. Then we have the following

Lemma 2.1.1. Let S be aproper overring of R. Then
(1) $(R: S)_{l}=J(S)$
(2) $(R: J(S))_{l}=S$

Proof. (1) It is clear that $(R: S)_{l} \supseteq J(S)$. If $(R: S)_{l} \supset J(S)$, then $(R: S)_{l}=(R: S)_{l} S=$ S because ($R: S)_{l}$ is an ideal of R and $S=R_{J(S)}$, a contradiction.
(2) It is clear that $(R: J(S))_{l} \supseteq S$. To show the converse inclusion, first assume that $J(S)=s S=S s$ for some $s \in J(S)$. Then we have $(R: J(S))_{l}=(R: S)_{l} s^{-1}=J(S) s^{-1}=S$ by (1). Next, assume that $J(S)$ is not finitely generated as a one-sided S-ideal. Then we
have $J(S)=J(S)^{2}$ and $O_{l}(J(S))=S$ by [MMU, (6.8)] and Lemma 1.2.8, and it follows that $(R: J(S))_{l} \subseteq(S: J(S))_{l}=O_{l}(J(S))=S$. Hence $(R: J(S))_{l}=S$.

A prime ideal P of R is said to be Goldie prime if R / P is a Goldie ring. By Theorem 1.2.6 and Proposition 1.2.12, P is Goldie prime if and only if R_{p} exists and is a Dubrovin valuation ring. We note that $J(S)$ is always Goldie prime for any overring S of R.

Lemma 2.1.2. Let I be an R-ideal and set $S=O_{r}(I)$ and $T=O_{l}(I)$. Then
(1) If I isf initely generated as a right R-ideal, then $(R: I)_{l} I=R$.
(2) If I is notfinitely generated as a right R-ideal, then $(R: I)_{l} I=J(S)$. In Particular, ($R: I)_{l} I$ is Goldie prime.

Proof. (1) It is clear.
(2). If $I=a S$ for some $a \in I$, then $S \neq R$ by assumption, and so $(R: I)_{l}=(R: a S)_{l}=$ $(R: S)_{l} a^{-1}=J(S) a^{-1}$ by Lemma 2.1.1(1). Hence we have $(R: I)_{l} I=J(S) a^{-1} a S=J(S)$. If I is not finitely generated as a right S-module, then $I=I J(S)$ by Lemma 1.2.8. It follows by Lemma 2.1.1(2) that $(R: I)_{l}=(R: I J(S))_{l}=\left((R: J(S))_{l}: I\right)_{l}=$ $(S: I)_{l}=I^{-1}(:=\{x \in Q \mid I x I \subseteq I\})$. Thus By Proposition 1.2.10(3), $J(S)=I^{-1} I=$ $(R: I)_{l} I$.

An element c in Q is called a right stabilizing element of R if $c R$ is an R-ideal and we denote by $\mathrm{r}-\mathrm{st}(R)=\{c \in Q \mid c R$ is right stabilizing $\}$. We say that c is stabilizing is $c R=R c$ and denote by $\operatorname{st}(R)=\{c \in Q \mid c$ is stabilizing $\}$.

If S is a Noetherian Prüfer order in a simple Artinian ring, i.e., a Dedekind ring, then any ideal is always a v-ideal, because it is projective. However, in non-Noetherian case, this is not necessarily to be held. In the case of Dubrovin valuations rings, this depends on the properties of Jacobson radical, as it will be seen in the following proposition which is used in section 2.2.

Proposition 2.1.3.

(1) If $J(R)=x R=R x$ for some $x \in R$, then any R-ideal is a v-ideal
(2) If $J(R)=J(R)^{2}$, then $\{c J(R) / c \in r-s t(R)\}$ is the set of all non v-ideals.

Proof. Let I be an R-ideal with $I \subset I_{v}$. Then $I \subseteq a J(R) \subseteq I_{v}$ for some regular element $a \in I_{v}$ by Lemma 1.2.4. So $I_{v} \subseteq(a J(R))_{v}=(a x R)_{v}=a x R \subseteq I_{v v}=I_{v}$. Thus $I_{v}=a x R$ $\subseteq a R \subseteq I_{v}$, and we have $J(R)=x R=R$, a contradiction. Hence $I=I_{v}$, and similarly we have $I={ }_{v} I$.
(2) By [MMU, (6.8), (6.12)] and Proposition 1.2.11, we have $(c J(R))_{v}=c(J(R))_{v}=c R$ $\supset c J(R)$ for any $c \in \mathrm{r}$-st (R), and so $c J(R)$ is not a v-ideal. Conversely, let I be an R-ideal with $I \subset I_{v}$. Then, by Lemma 1.2.4, $I \subseteq c J(R) \subseteq I_{v}$ for some regular element $c \in I_{v}$. So $I_{v}=(c J(R))_{v}=c R$. Thus $c \in \mathrm{r}-\mathrm{st}(R)$. Now we shall show that $I=c J(R)$. To prove this assume, on the contrary, that $I \subset c J(R)$. Then there is a regular element $d \in c J(R)$ with $I \subseteq d J(R) \subseteq I_{v}$. Thus, again we have $I_{v}=d R$, which implies $d \in \mathrm{r}-\mathrm{st}(R)$. On the other hand, since $d \in c J(R)$, we have $d R \subset c J(R)$, because $d R$ is a v-ideal and $c J(R)$ is not a v-ideal. Thus $I_{v}=d R \subset c J(R) \subseteq I_{v}$, a contradiction. Hence $I=c J(R)$.

Remark. In the case Q is finite dimensional over its center, $\left[\mathrm{D}_{1}\right]$ has obtained the following ([MMU, (7.12) and (7.5)]):
(1) $O_{r}(I)=O_{l}(I)$ for any R-ideal I.
(2) If $c R \supseteq R c$ for some $c \in Q$, then $c R=R c$. In particular, $\mathrm{r}-\mathrm{st}(R)=\operatorname{st}(R)=1$ - $\mathrm{st}(R)$ = $\{c \in Q \mid c R$ is left stabilizing $\}$.
(3) If $c R=R c$, then $c S=S c$ for an overring S of R.

However, if Q is infinite dimensional over its center, then (1) - (3) are not necessarily to be held. For example, let (K, W) and (K, V) be valued fields as in [XKM, (2.5)], namely, $W \supset V, \sigma \in$ Aut (K) such that $\sigma(V)=V$ and $\sigma(W) \subset W$. Set $S=W_{(1)}=$
$W+x T$ and $R=V_{(1)}=V+x T$, where $T=K[x, \sigma]_{(x)}$, the localization of $K[x, \sigma]$ at maximal ideal $(x)=x K[x, \sigma] . S$ and R are both Dubrovin valuation rings, in fact, they are total valuation rings. First we note that $x S x^{-1}=\sigma(S)=\sigma(W)+\sigma(x T) \subseteq W+x T=$ S. By $[\mathrm{XKM},(1.5)], \sigma(S) \subset S$, so that $x S x^{-1} \subset S$. Hence $I=S x$ is an ideal of S with $I \supset$ $x S$. Similarly, $x R=R x$, because $\sigma(V)=V$. Furthermore, it is easily seen that $S=$ $O_{l}(I) \subset x^{-1} S x=O_{r}(I)$. Hence (1)-(3) are not necessarily true. In particular, $x \in 1-\operatorname{st}(S)$ but $x \notin \operatorname{st}(S)$.

2.2. R-ideals of a Dubrovin valuation ring R

For any ideal I of a Dubrovin valuation ring R of Q, we write $\operatorname{Spec}(R)$ for the set of all prime ideals of R and denote $\sqrt{I}=\cap\{P \mid P \in \operatorname{Spec}(R)$ with $P \supseteq I\}$ the prime radical of I which is a prime ideal ([MMU, (13.1)]). An ideal A of R is called right \sqrt{A}-primary if $a R b \subseteq A$, where $a, b \in R$, implies either $a \in A$ or $b \in \sqrt{A}$. Similarly, left primary ideals are defined. In [BMU], they have described all right primary ideals of R. So it is natural to ask the question: Describe the structure of all R-ideals by usage of stabilizing elements and primary ideals. In this section, we give a partial answer to this question in general case and a complete answer in the case Q is finite dimensional over its center after a few preliminary lemmas.

Lemma 2.2.1. Let R be a Dubrovin valuation ring and let I be an R-ideal which is not finitely generated as a right S-ideal, where $S=O_{r}(I)$. Then $(S: I)_{l}=(R: I)_{l}$.

Proof. First note that $J(S)=J(S)^{2}$ and so $I=I J(S)$, by Lemma 1.2.8 and Proposition 1.2.10(3). Hence we have $(R: I)_{l}=(R: I J(S))_{l}=\left((R: J(S))_{l}: I\right)_{l}=\left(O_{l}(J(S): I)_{l}=\right.$ $(S: I)_{l}$ by [MMU, (6.8)], because $(R: J(S))_{l}=O_{l}(J(S))$.

Remark. In Lemma 2.2.1, we can not drop the condition that I is not finitely generated as a right S-module and $J(S)=J(S)^{2}$.
(1) If $S \neq R$ and $I=a S$ (see the example in the Remark of Sec. 2.1), then $(R: I)_{l} \subseteq$ $R a^{-1} \subseteq S a^{-1}=(S: I)_{i}$.
(2) If $J(S) \supset J(S)^{2}$, then $J(S)=a S$, and so $(R: I)_{l} \subseteq R a^{-1} \subseteq S a^{-1}=(S: I)_{l}$, where $I=a S$.

A Goldie prime ideal P is Archimedean if there is a prime segment $P \supset P_{0}$ which is Archimedean, that is, for any $a \in P \backslash P_{0}$, there is an ideal $I \subseteq P$ with $a \in I$ and $P_{0}=$ $\cap I^{n}$ (see [BMO] and [BMU] for details concerning prime segments). Then we have the following.

Lemma 2.2.2.

(1) Suppose that $J(R)$ is Archimedean and $J(R)=R x R$. Then $J(R)$ is principal.
(2) Let I be an R-ideal with $S=O_{r}(I)$ and $T=O_{l}(I)$. Suppose that $I=R q R$ and $J(S)$ is Archimedean. Then $I=a S=$ Tafor some $a \in I$.

Proof. (1) Let $J(R) \supset P_{0}$ be the Archimedean prime segment. But $\mathscr{F}=\{A \mid A$ is an ideal of R and $A \nexists x\}$. Then \mathscr{F} is a non-empty inductive set, and so it contains a maximal element B. Since there are no ideals between $J(R)$ and B properly, B is prime if $J(R)$ $=J(R)^{2}$. In this case, we have $B=P_{0}$, which contradicts the Archimedeaness. So $J(R)$ $\supset J(R)^{2}$ and hence $J(R)$ is principal.
(2) To show $I=a S$ for some $a \in I$, it suffices to prove that $I J(S) \subset I$. Suppose that on the contrary, $I=I J(S)$. Then $q=r_{1} q x_{1}+\ldots+r_{n} q x_{n}$ and $S x=S x_{1}+\ldots+S x_{n}$, where $r_{i} \in R$ and $x, x_{i} \in J(S), i=1, \ldots, n$. Now, we have $I=I S x S$. If $J(S)=S x S$, then by (1), $J(S)=s S=S s$ and so $I=I s$. It follows that $s^{-1} \in O_{r}(I)=S$, a contradiction. Hence $J(S)$ $\supset S x S$ and there is some $t \in J(S)$ with $J(S) t \supset S x S$ by Lemma 1.2.4. Then $I=I S x S \subseteq$ $I J(S) t \subseteq I t$ and so $t^{-1} \in O_{r}(I)=S$, a contradiction. Hence $I \supset I J(S)$. Thus $I=a S$ for some $a \in I$ and $I=a S a^{-1} a=O_{r}(I) a=T a$ follows.

Theorem 2.2.3. Let R be a Dubrovin valuation ring in simple Artinian ring Q. Let I be an R-ideal such that $O_{r}(I)=S=O_{l}(I)$ and I is notfinitely generated as a right R ideal. Suppose that $J(S)$ is Archimedean. Then $I=c A$ for some $c \in \operatorname{st}(S)$ and A a right and lef $t J(S)$-primary ideal.

Proof. Let $J(S) \supset P$ be an Archimedean prime segment. By Lemma 2.1.2 (2), we have $(R: I)_{l} I=J(S)$. Let $\mathscr{F}=\left\{x \in(R: I)_{l} \mid \sqrt{S x S I}=J(S)\right\}$. Then $\mathscr{F} \neq \varnothing$, because $J(S)$ is Archimedean. First we claim that $A=S x S I(x \in \mathscr{F})$ is right and left $J(S)$-primary. Since $\sqrt{A}=J(S)$, it suffices to prove that $O_{r}(A)=S=O_{l}(A)$ by [BMU, (2.5)]. It is clear that $O_{r}(A) \supseteq S$ and $O_{l}(A) \supseteq S$. If $O_{r}(A) \supset S$, then $O_{r}(A) \supseteq R_{P}$ because there are no Goldie prime ideals between $J(S)$ and P, and so we have $A=B R_{P}=R_{P}$, a contradiction. Similarly, $O_{l}(A)=S$.

Next we show that $\cup\{S x S \mid x \in \mathscr{F}\}=(R: I)_{l}$. Since $O_{r}(I)=S=O_{l}(I)$, ($R: I)_{l}$ is a right S-ideal. To show that $(R: I)_{l}$ is a left S-ideal, first suppose that $I=a S$ for some $a \in I$. Then, by Lemma 2.1.1, $(R: I)_{l}=J(S) a^{-1}$ so that it is a left S-ideal. Suppose that I is not finitely generated as a right S-ideal. Then, by Lemma 2.2.1, $(R: I)_{l}$ is a left S-ideal. Hence $S x S \subseteq(R: I)_{l}$ for any $x \in \mathscr{F}$. Suppose that $y \in(R: I)_{l}$ but $y \notin \mathscr{F}$. Then we have $S y S I \subseteq P$ and so $S y S \subseteq S x S$ for any $x \in \mathscr{F}$. This is a contradiction and hence $U\{S x S \mid x \in \mathscr{F}\}=(R: I)_{l}$ holds.

Finally we claim that $O_{r}(S x S)=S$ for some $x \in \mathscr{F}$. Suppose that $O_{r}(S x S) \supset S$ for all $x \in \mathscr{F}$. Then $O_{r}(S x S)_{\supseteq R_{P}}$ and so $(R: I)_{l} R_{P}=(R: I)_{l}$.

Case 1. $I=a S$ for some $a \in I$. Then $S=O_{r}(I)=a S a^{-1}$ and $J(S)=a J(S) a^{-1}$ follows. By Lemma 2.1.1 (1), $(R: I)_{l}=(R: a S)_{l}=(R: S)_{l} a^{-1}=J(S) a^{-1}=a^{-1} J(S)$, and so $(R: I)_{l}=(R: I)_{l} R_{P}=a^{-1} J(S) R_{P}=a^{-1} R_{P}$. Hence we have $J(S)=R_{P}$, a contradiction.

Case 2. I is not finitely generated as a right S-ideal. Then, by Lemma 2.2.1, $I^{-1}=(R: I)_{l}$ and so $I^{-1} R_{P}=I^{-1}$. It follows that $R_{P} \subseteq O_{r}\left(I^{-1}\right)=O_{l}(I)=S$ by [MMU, (6.10)], a contradiction.

Hence there is some $x \in \mathscr{F}$ such that $O_{r}(S x S)=S$. The above discussion shows that there exists $x \in \mathscr{F}$ such that $A=S x S I$ is right and left $J(S)$-primary, where $O_{r}(S x S)=S=O_{l}(S x S)$. By Lemma 2.2.2, there is some $c \in S x S$ such that $S x S=c S=$ $S c$. Thus we have $c \in \operatorname{st}(S)$ and $I=c^{-1} A\left(c^{-1} \in \operatorname{st}(S)\right)$.

A Goldie prime ideal P is called a limit prime ideal if $P=\bigcup\left\{P_{\lambda} \mid P \supset P_{\lambda}\right.$: Goldie prime \}. Suppose that Q is finite dimensional over its center. Then any prime ideal is Goldie prime and it is either Archimedean or limit prime (see [BMO]). Also note that an ideal is right primary if and only if it is left primary, which is called a primary ideal (see [MMU, (13.4)]). Now we have the following proposition which describes all R-ideals in terms of primary ideals and stabilizing elements in the case Q is finite dimensional over its center.

Proposition 2.2.4. Let R be a Dubrovin valuation ring of a simple Artinian ring Q with finite dimension over its center and I be an R-ideal with $O_{r}(I)=S\left(=O_{l}(I)\right)$. Then
(1) Suppose that I isfinitely generated as a right R-ideal. Then $I=c R=R c$ for some $c \in \operatorname{st}(R)$.
(2) Suppose that I is notfinitely generated as a right R-ideal.
(a) If $J(S)$ is Archimedean, then $I=c A=A c f o r ~ s o m e ~ c \in \operatorname{st}(S)$ and some $J(S)$ primary ideal A.
(b) If $J(S)$ is limit prime, then I is one of the following three; $I=c S=S c$ for some $c \in \operatorname{st}(S), I=c J(R)=J(R) c$ for some $c \in \operatorname{st}(R)$ and $I=\bigcap c_{\lambda} R_{\lambda}$ for some $c_{\lambda} \in \operatorname{st}\left(R_{\lambda}\right)$, where $R_{\lambda}=R_{P_{\lambda}}$ and P_{λ} runs over all Archimedean prime ideals with $P_{\lambda} \subset J(S)$.

Proof. (1) Because R is Bezout, we have $I=c R$ for some $c \in \operatorname{st}(R)$ and so $I=R c$ by Remark in Sec. 2.1.
(2)(a) This follows from Theorem 2.2.3 and [MMU, (7.11)].
(b) First we shall prove that $J(S)=\bigcup\left\{P_{\lambda}\right.$: Archimedean $\left.\mid P_{\lambda} \subset J(S)\right\}$. To prove this, let x be any non-zero element in $J(S)$ and $A=S x S$. Suppose that $O_{r}(A)=T$. Then A $=y T=T y$ by [MMU, (7.10)]. Thus $P=\sqrt{A} P_{0}=\cap A^{n}$ is an Archimedean segment (see [BMO, (5)]) and $x \in P$.

Case 1. $I \subset I_{v}$. Then $J(R)=J(R)^{2}$ and $I=c J(R)$ for some $c \in \operatorname{st}(R)$ by Proposition 2.1.3.

Case 2. $I=I_{\mathrm{v}}$. Suppose that $I \neq c S$ for any $c \in \operatorname{st}(S)$. Then, by Lemma 1.2.8, $I=$ $I J(S)=I\left(\bigcup_{\lambda} P_{\lambda}\right)$. If $I=I P_{\lambda}$ for some λ, then $S=O_{r}(I) \supseteq O_{r}\left(P_{\lambda}\right)=R_{P_{\lambda}}$, a contradiction. So we have $I R_{\lambda} \supset I \supset I P_{\lambda}$. To show that $O_{r}\left(I R_{\lambda}\right)=R_{\lambda}$, suppose that $O_{r}\left(I R_{\lambda}\right)=T \supset R_{\lambda}$. Then $I R_{\lambda}=I T$ and so $I T=I T P_{\lambda}=I R_{\lambda} P_{\lambda}=I P_{\lambda} \subset I$, a contradiction. Hence $O_{r}\left(I R_{\lambda}\right)=R_{\lambda}$. So, by the similar method as in Lemma 1.2.8, we have $I R_{\lambda}=c_{\lambda} R_{\lambda}$, for some $c_{\lambda} \in I R_{\lambda}$, because $I R_{\lambda}=R_{\lambda} I$ by [MMU, (6.5) and (7.11)]. Hence $I R_{\lambda}=c_{\lambda} R_{\lambda}=R_{\lambda} c_{\lambda}$ by [MMU, (7.5)]. Thus $c_{\lambda} \in \operatorname{st}\left(R_{\lambda}\right)$. To show that $I=$ $\cap I R_{\lambda}$, let $B=\cap I R_{\lambda}$. Then $(R: I)_{i} B \subset(R: I)_{l} I R_{\lambda}=J(S) R_{\lambda}=R_{\lambda}$ for any λ by Lemma 2.1.2 (2). So $(R: I)_{l} B \subseteq \cap R_{\lambda}=S$ by [BMO, (4)]. Thus $B \subseteq\left(S:(R: I)_{l}\right)_{r}=$ $\left(S:(S: I)_{i}\right)_{r}=I_{v}=I$ by Lemma 2.2.1 and Proposition 1.2.10, and hence $I=\cap c_{\lambda} R_{\lambda}$ for some $c_{\lambda} \in \operatorname{st}\left(R_{\lambda}\right)$.

Remark. Proposition 2.2.4 (2)(a) is not necessarily held if Q is infinite dimensional over its center. To give a counter example, let $S=W+x T$ and $R=V+x T$ be the same as in the example of Remark in Sec. 2.1 and set $I=S x$. Then $O_{l}(I)=S$ and I is not finitely generated as a left R-ideal. Assume that $I=A c$ for some $c \in \operatorname{st}(S)$ and some P-primary ideal A, where $P=J(S)$. Then, by [XKM, (1.10)(3)], we may assume that for some $c \in$ $\operatorname{st}(W)=\operatorname{K} \backslash\{0\}$. By Remark to [XKM, (1.7)], $A=\tilde{A}+x T$ for some non-zero primary ideal $\tilde{A}=\varphi(A)$, where $\varphi: T=K[x, \sigma]_{(x)} \rightarrow K$ is the natural map with $\varphi\left(f(x) c(x)^{-1}\right)=$
$f_{0} c_{0}{ }^{-1}\left(f(x)=f_{0}+f_{1} x+\ldots+f_{n} x^{n}\right.$ and $c(x)=c_{0}+c_{1} x+\ldots+c_{m} x^{m}$ with $\left.c_{0} \neq 0\right)$. So it follows that $0=x S \cap K=c A \cap K=c \tilde{A}$, a contradiction.

CHAPTER 3

A characterization of fully bounded Dubrovin valuation rings

A ring is called right (left) bounded if any essential right (left) ideal contains a non-zero (two-sided) ideal. A ring is just called bounded if it is both right bounded and left bounded. Let S be a ring. We say that S is $f u l l y$ bounded if S / P is bounded for any prime ideal P of S. We write $J(S)$ for the Jacobson radical of S and $\operatorname{Spec}(S)$ for the set of all prime ideals of S.

Let R be a Dubrovin valuation ring in a simple Artinian ring Q (see [MMU, Chap.II] for the definition and elementary properties of Dubrovin valuation rings). A prime ideal P of R is called Goldie prime if R / P is a prime Goldie ring. We denote by $\mathrm{G}-\operatorname{Spec}(R)$ the set of all Goldie prime ideals of R. Now let $P_{1}, P \in \mathrm{G}-\operatorname{Spec}(R)$ with $P_{1} \supset P$. The pair $P_{1} \supset P$ is called a prime segment if there are no Goldie primes properly between P_{1} and P.

Let $P \in \mathrm{G}-\operatorname{Spec}(R)$ with $P \neq J(R)$ and $\operatorname{set} P_{1}=\cap\left\{P_{\lambda} \mid P_{\lambda} \in \mathrm{G}-\operatorname{Spec}(R)\right.$ with $\left.P_{\lambda} \supset P\right\}$. In $[\mathrm{BMO},(6)]$, they have shown that the following four cases only occur:
(1) P is lower limit, i.e., $P=P_{1}$. Otherwise, $P_{1} \supset P$ is a prime segment.
(2) $\quad P_{1} \supset P$ is Archimedean.
(3) $\quad P_{1} \supset P$ is simple.
(4) $\quad P_{1} \supset P$ is exceptional, i.e., there exists a non-Goldie prime ideal C such that $P_{1} \supset$
$C \supset P$.
In section 3.1, we prove that R is fully bounded iff (1) and (2) only hold (see Theorem 3.1.5). (Note that $R / J(R)$ is bounded, because it is a simple Artinian ring). For any regular element c in $J(R)$, we define $P(c)=\cap\left\{P_{\lambda} \mid \quad P_{\lambda} \in \mathrm{G}-\operatorname{Spec}(R)\right.$ with $\left.c \in P_{\lambda}\right\}$, a Goldie prime ideal ([BMO, (1)]). \dot{R} is called locally invariant if $c P(c)=P(c) c$ for any regular element c in $J(R)$. This concept was defined by Gräter [G] in order to study the approximation theorem in the case where R is a total valuation ring. We show that R is fully bounded if and only if it is locally invariant, by using Theorem 3.1 .5 (see Proposition 3.1.6).

In section 3.2, we give several examples of of fully bounded Dubrovin valuation rings of Q with infinite dimension over its center. If Q is of finite dimensional over its center, then R is always fully bounded.

3.1. Fully bounded Dubrovin valuation rings

Throughout this section, R will denote a Dubrovin valuation ring in a simple Artinian ring Q. For any $P \in \operatorname{Spec}(R)$, set $C(P)=\{c \in R \mid c$ is regular $\bmod P\}$. If $P \in$ G-Spec (R), then $C(P)$ is localizable and we denote by R_{P} the localization of R at P. Before starting the lemmas, we note the following: there is a one-to-one correspondence between $G-\operatorname{Spec}(R)$ and the set of all overrings of R, which is given by $P \rightarrow R_{P}$ with $P=J\left(R_{P}\right)$ and $S \rightarrow J(S)(P \in \mathrm{G}-\operatorname{Spec}(R)$ and S is an overring of $R)$. Furthermore, for any $P_{1}, P \in \mathrm{G}-\operatorname{Spec}(R), P_{1} \supset P$ iff $R_{P} \subset R_{P_{1}}$ ([MMU, (§ 6)] and [BMO, (§2)]). We will use these properties throughout the chapter.

Lemma 3.1.1. Let S be an order in Q and A be an S-ideal such that $O_{r}(A)=T=$ $O_{l}(A)$ where $O_{r}(A)=\{q \in Q \mid A q \subseteq A\}$ and $O_{l}(A)=\{g \in Q \mid g A \subseteq A\}$. Suppose that $A=a$ Tfor some $a \in A$. Then $A=T a$.

Prog. $T=O_{l}(A)=a T a^{-1}$ implies $A=T a$.

Lemma 3.1.2. Let R be a Dubrovin valuation ring g g and $P \in G-\operatorname{Spec}(R)$. Suppose that P is lower limit, i.e., $P=\cap\left\{P_{\lambda} \mid P_{\lambda} \in \mathrm{G}-\operatorname{Spec}(R)\right.$ with $\left.P_{\lambda} \supset P\right\}$. Then $R_{P}=$ $\cup R_{P_{\lambda}}$ and $C(P)=\cup C_{P_{\lambda}}$.

Proof. Since $P_{\lambda} \supset P$, it follows that $R_{P} \supset R_{P_{\lambda}}$ so that $R_{P} \supseteq S=\cup R_{P_{\lambda}}$. Suppose that $R_{P} \supset S$. Then for any $P_{\lambda}, P_{\lambda}=J\left(R_{P_{\lambda}}\right) \supseteq J(S) \supset J\left(R_{P}\right)=P$ implies $P=\cap P_{\lambda} \supseteq J(S) \supset$ P, a contradiction. Hence $R_{P}=\cup R_{P_{\lambda}}$ and so $C(P)=\cup C\left(P_{\lambda}\right)$ follows.

Lemma 3.1.3. Let R be a Dubrovin valuation ring of Q and $P \in \mathrm{G}-\operatorname{Spec}(R)$. Then
(1) $\operatorname{Spec}\left(R_{P}\right)=\left\{P_{1} \mid P_{1} \in \operatorname{Spec}(R)\right.$ with $\left.P \supseteq P_{1}\right\}$.
(2) Let P_{1} and P_{2} be in $\operatorname{Spec}(R)$ with $P \supseteq P_{1} \supset P_{2}$. Then $P_{1} \supset P_{2}$ is a prime segment of $R f$ and only f it is ap rime segment of R_{P}.

Proof. (1) Let $P_{1} \in \operatorname{Spec}\left(R_{P}\right)$.
Case 1. If P_{1} is Goldie prime, then $\left(R_{P}\right)_{P_{1}}$ is an overring of R_{P} (and so of R) with $J\left(\left(R_{P}\right)_{P_{1}}\right)=P_{1}$, i.e., $P_{1} \in \operatorname{Spec}(R)$ and $P=J\left(R_{P}\right) \supseteq P_{1}$.
Case 2. If P_{1} is non-Goldie prime, then we can construct an exceptional prime segment of R_{P}, say $P_{2} \supset P_{1} \supset P_{0}$ by [BMO, (6)]. By case $1, P \supseteq P_{2}$ and $P_{2}, P_{0} \in$ $\mathrm{G}-\mathrm{Spec}(R)$. It easily follows from note before Lemma 3.1.1 that there are no Goldie primes properly between P_{2} and P_{0}, which implies $P_{2} \supset P_{0}$ is a prime segment of R. As in [BMO], let $K\left(P_{2}\right)=\left\{a \in P_{2} \mid P_{2} a P_{2} \subset P_{2}\right\}$. Then $K\left(P_{2}\right)=P_{1}$ by [BMO, (7)] and so $P_{2} \supset P_{0}$ is an exceptional prime segment of R with $K\left(P_{2}\right)=P_{1}$, i.e., P_{1} is non-Goldie prime of R with $P \supset P_{1}$. Conversely, let $P_{1} \in \operatorname{Spec}(R)$ with $P \supseteq P_{1}$. Then from note before Lemma 3.1.1 and the method we have just done, we can easily see that $P_{1} \in \operatorname{Spec}\left(R_{P}\right)$ and that $P_{1} \in \mathrm{G}-\operatorname{Spec}(R)$ iff $P_{1} \in \mathrm{G}-\operatorname{Spec}\left(R_{P}\right)$.
(2) This is clear from (1).

Lemma 3.1.4. Let R be a Dubrovin valuation ring of Q and $P_{1} \supset P$ be an Archimedean prime segment. Thenfor any $c \in P_{1} \backslash P$, thefollowing hold:
(1) $R_{P_{1}} c R_{P_{1}}=a R_{P_{1}}=R_{P_{1}}$ afor some $a \in P_{1}$.
(2) If c is a regular element, then $c R_{P_{1}}=R_{P_{1}} c$ and $c P_{1}=P_{1} c$.

Proof. Firstly note that $P_{1} \supset P$ is an Archimedean prime segment of $R_{P_{1}}$ by Lemma 3.1.3 and [BMO, (7)].
(1) Let $\tilde{R}_{P_{1}}=R_{P_{1}} / P$, a Dubrovin valuation ring of $\overline{R_{P}}=R_{P} / P$ (see Theorem 1.2.6) such that $J\left(\tilde{R}_{P_{1}}\right)=\tilde{P}_{1}=P_{1} / P$ and $\tilde{P}_{1} \supset(\tilde{0})$ is Archimedean. Here for any $a \in R_{P_{1}}$, we
write \tilde{a} for the image of a in $\tilde{R}_{P_{1}}$. If $\tilde{P}_{1}=\tilde{P}_{1}{ }^{2}$, then $\tilde{0} \neq \tilde{R}_{P_{1}} \tilde{c} \tilde{R}_{P_{1}}=\tilde{a} \tilde{R}_{P_{1}}=$ $\tilde{R}_{P_{1}} \tilde{a}$ for some $a \in P_{1}$ by [BMU, (2.1)]. If $\tilde{P}_{1} \supset \tilde{P}_{1}{ }^{2}$, then $\tilde{R}_{P_{1}}$ is a Noetherian Dubrovin valuation ring and so any ideal of $\tilde{R}_{P_{1}}$ is power of \tilde{P}_{1}. Thus $\tilde{R}_{P_{1}} \tilde{c} \tilde{R}_{P_{1}}=$ $\tilde{a} \tilde{R}_{P_{1}}=\tilde{R}_{P_{1}} \tilde{a}$ for some $a \in P_{1}$, because \tilde{P}_{1} is principal. Hence, in both cases, $R_{P_{1}} c R_{P_{1}}+P=a R_{P_{1}}+P=R_{P_{1}} a+P$. However, since $\tilde{a} \in C_{\tilde{R}_{P_{1}}}(\tilde{0})=\left\{\tilde{b} \in \tilde{R}_{P_{1}} \mid \tilde{b}\right.$ is regular in $\left.\tilde{R}_{P_{1}}\right\}$, it follows that $a \in C_{R_{P_{1}}}(P)$ and so a is a regular element by Proposition 1.3.2. Thus we have $a R_{P_{1}} a^{-1} \subseteq a R_{P} a^{-1}=R_{P}$. It follows that $a R_{P_{1}}$ and P are both left $a R_{P_{1}} a^{-1}$ and right $R_{P_{1}}$-ideals. Hence $a R_{P_{1}} \supset P$ by [MMU, (6.4)] and similarly $R_{P_{1}} a \supset P$. Since $R_{P_{1}} c R_{P_{1}}$ and P are both ideals of $R_{P_{1}}$, it follows that $R_{P_{1}} c R_{P_{1}} \supset P$. Therefore $R_{P_{1}} c R_{P_{1}}=a R_{P_{1}}=R_{P_{1}} a$ follows.
(2) By (1), $P_{1} \supseteq R_{P_{1}} c R_{P_{1}}=R_{P_{1}} a=a R_{P_{1}}$ for some $a \in P_{1}$. Suppose that $c R_{P_{1}} \subset$ $R_{P_{1}} c R_{P_{1}}$. Then, by Lemma 1.2.4, there is a $b \in R_{P_{1}} c R_{P_{1}}$ such that $c R_{P_{1}} \subseteq b P_{1} \subseteq a P_{1}$, because $Q_{l}\left(c R_{P_{1}}\right)=c R_{P_{1}} c^{-1}$ and $P_{1}=J\left(R_{P_{1}}\right)$. So $R_{P_{1}} a^{-1} c R_{P_{1}} \subseteq P_{1}$. On the other hand, $R_{P_{1}} c R_{P_{1}}=a R_{P_{1}}$ implies that $R_{P_{1}} a^{-1} c R_{P_{1}}=R_{P_{1}}$, a contradiction. Hence, $c R_{P_{1}}=$ $R_{P_{1}} c R_{P_{1}}$ and similarly $R_{P_{1}} c=R_{P_{1}} c R_{P_{1}}$ so that $c R_{P_{1}}=R_{P_{1}} c$. Since $c R_{P_{1}} c^{-1}=R_{P_{1}}$ and $J\left(R_{P_{1}}\right)=P_{1}$, we have $c P_{1} c^{-1}=P_{1}$ and so $c P_{1}=P_{1} c$.

Theorem 3.1.5. Let R be a Dubrovin valuation ring of a simple Artinian ring Q. Then R isf ully bounded f and only for any $P \in \operatorname{Spec}(R), P \neq J(R)$, thefollowing hold:
(1) $\quad P \in \mathrm{G}-\operatorname{Spec}(R)$.
(2) P is either lower limit or there is a $P_{1} \in \operatorname{Spec}(R)$ such that $P_{1} \supset P$ is an Archimedean prime segment.

Proof. Suppose that R is fully bounded.
(1) Assume that there is a non-Goldie prime ideal C. Then we have an exceptional prime segment, say, $P_{1} \supset C \supset P_{2}$ by [BMO, (6)]. R is an n-chain ring by Theorem
1.2.2 and so is $R=R / C$. This implies that R has a finite Goldie dimension, say, $m(\leq$ n). Thus there are non-zero uniform right ideals $\overline{U_{i}}$ of \bar{R} such that $\overline{U_{1}} \oplus \ldots \oplus \overline{U_{m}}$ is an essential right ideal of \bar{R}. Since \bar{R} is a prime ring, $\overline{U_{i}} \cap \overline{P_{1}} \supseteq \overline{U_{i}} \overline{P_{1}} \neq \overline{0}$ and so there are non-zero $\overline{u_{i}} \in \overline{U_{i}} \cap \overline{P_{1}}$, where $u_{i} \in P_{1}$. Set $I=u_{1} R+\ldots+u_{m} R$. Then $I=a R$ for some $a \in I$, because R is Bezout (Theorem 1.2.2) and $\bar{I}=\overline{u_{1}} \bar{R} \oplus \ldots \oplus \overline{u_{m}} \bar{R}=$ $\bar{a} \bar{R}$ is an essential right ideal of \bar{R}. We claim that $\overline{P_{1}} \supset \bar{I}$. On the contrary, suppose that $\overline{P_{1}}=\bar{I}$, i.e., $P_{1}=a R+C$. Note that $O_{l}(C)=R_{P_{1}}=O_{r}(C)$ by $[\mathrm{BMU},(2.2)]$ so that C is an ideal of $R_{P_{1}}$. If C is a principal right ideal of $R_{P_{1}}$, say, $C=c R_{P_{1}}$ for some $c \in$ C, then $P_{1}=a R_{P_{1}}+c R_{P_{1}}=b R_{P_{1}}$ for some $b \in P_{1}$. It follows from Lemma 3.1.1 that $P_{1}=b R_{P_{1}}=R_{P_{1}} b$ and so $P_{1} \supset P_{1}^{2} \supset C$, which contradicts to the fact that there are no ideals properly between P_{1} and C (cf. [BMO, (6)]). If C is not a principal right ideal of $R_{P_{1}}$, then $C P_{1}=C$ by Lemma 1.2.8 and so $P_{1}=P_{1}^{2}=a P_{1}+C P_{1}=a P_{1}+C$. Thus we have $a=a p+d$ for some $p \in P_{1}$ and $d \in C$ and $a(1-p)=d \in C$. It follows that $a \in C$, because $1-p$ is a unit of $R_{P_{1}}$, which shows $\bar{I}=\overline{0}$, a contradiction. We have shown that $\overline{P_{1}} \supset \bar{I}$ and \bar{I} is an essential right ideal of \bar{R}. Hence \bar{R} is not bounded, because there are no ideals properly between P_{1} and C. Therefore, any prime ideal of R is Goldie prime.
(2) Let $P \in \mathrm{G}-\operatorname{Spec}(R)$ and suppose that P is not lower limit. Then there is a $P_{1} \in$ G-Spec (R) such that $P_{1} \supset P$ is a prime segment, which is not exceptional by (1). Suppose that this is simple. For any $c \in P_{1} \cap C(P)$, it follows that $\bar{c} \bar{P}_{1}$ is an essential right ideal of $\bar{R}=R / P$, which is a Dubrovin valuation ring of R_{P} / P (Corollary 1.2.3). Suppose that $\bar{c} \overline{P_{1}}=\overline{P_{1}}$, i.e., $c P_{1}+P=P_{1}$. Since $c P_{1}$ and P are both left $c R_{P_{1}} c^{-1}$ and right $R_{P_{1}}$-ideals (note $c R_{P_{1}} c^{-1} \subseteq c R_{P} c^{-1}=R_{P}$), we have either $c P_{1} \supset P$ or $c P_{1} \subseteq P$ by Proposition 1.2.5. The latter case is impossible and so $c P_{1} \supset P$. Thus $c P_{1}=P$ and $c^{-1} \in O_{l}\left(P_{1}\right)=R_{P_{1}}$ follows. This is contradiction, because $c \in P_{1}$. Hence we have shown that $\overline{P_{1}} \supset \bar{c} \overline{P_{1}}$ and $\bar{c} \overline{P_{1}}$ is an essential right ideal. Therefore, \bar{R} is not bounded,
because there are no ideals properly P_{1} and (0). Hence either P is lower limit or there is a $P_{1} \in \mathrm{G}-\operatorname{Spec}(R)$ such that $P_{1} \supset P$ is an Archimedean prime segment.

Conversely, suppose that the conditions (1) and (2) hold and let $P \in \operatorname{Spec}(R)$. Then P is Goldie prime by (1). Firstly, assume that P is lower limit, i.e., $P=\cap\left\{P_{\lambda} \mid\right.$ $P_{\lambda} \in \mathrm{G}-\operatorname{Spec}(R)$ with $\left.P_{\lambda} \supset P\right\}$. Then $C(P)=\cup C\left(P_{\lambda}\right)$ by Lemma 3.1.2. So, for any $c \in$ $C(P)$, we have $c \in C\left(P_{\lambda}\right)$ for some λ. Then $c R \supset P_{\lambda}$, because $c R$ and P_{λ} are both left $c R c^{-1}$ and right R-ideals. Hence $\bar{c} \bar{R} \supset \overline{P_{\lambda}} \neq \overline{0}$ in $\bar{R}=R / P$, showing that \bar{R} is bounded. Secondly, suppose that the prime segment $P_{1} \supset P$ is Archimedean and let $c \in C(P)$. Then, as before, $\bar{c} \bar{P}_{1}$ is an essential right ideal of $\bar{R}=R / P$ and so $c P_{1} \cap C(P) \neq \varnothing$. Let $d \in c P_{1} \cap C(P)$. Then, by Lemma 3.1.4 (2) and Theorem 1.3.3, $c R \supseteq c P_{1} \supseteq d R_{P_{1}}=R_{P_{1}} d$ and $d R_{P_{1}} \supset P$ follows. Therefore, $\bar{R}=R / P$ is bounded and hence R is fully bounded.

As an application of Theorem 3.1.5, we have the following:

Proposition 3.1.6. Let R be a Dubrovin valuation ring of a simple Artinian ring Q. Then R is locally invariant f and only f^{f} it isf ully bounded.

Proof. Suppose that R is locally invariant. In order to prove that it is fully bounded, on the contrary, assume that R is not fully bounded. Then there are prime ideals P, P_{1} such that either the prime segment $P_{1} \supset P$ is simple or $P_{1} \in \operatorname{G-Spec}(R), P$ is a non-Goldie prime ideal and there are no ideals properly between P_{1} and P. In either case, we shall prove that there is a regular element $c \in P_{1} \backslash P$. Let c_{1} be any element in $P_{1} \backslash P$. If $c_{1} R$ is an essential right ideal, then $c=c_{1}$ is regular. If $c_{1} R$ is not an essential right ideal, then there is a right ideal I such that $c R \oplus I$ is essential. So it follows from Goldie's theorem that $(c R \oplus I) P_{1}$ is also an essential right ideal which is contained in P_{1} but not in P. So there is a regular element $c \in\left(c_{1} R \oplus I\right) P_{1}$ but not in P by [MR, (3.3.7)]. Now let $c \in P_{1} \backslash P$ such that c is regular. Then $c P_{1}=P_{1} c$, because $P_{1}=P(c)$.

Since $P_{1} \supseteq c P_{1}=P_{1} c \supset P$, we have $c P_{1}=P_{1}$, which implies $c^{-1} \in O_{l}\left(P_{1}\right)=R_{P_{1}}$. Hence $R_{P_{1}}=c R_{P_{1}} \subseteq P_{1}$, a contradiction. Therefore, R is fully bounded.

Suppose that R is fully bounded. Let $c \in J(R)$ such that c is regular. By the assumption and Theorem 3.1.5, $P(c)=\cap\left\{P_{\lambda} \mid \quad P_{\lambda} \in \operatorname{Spec}(R)\right.$ such that $\left.P_{\lambda} \ni c\right\}$, which is Goldie prime by Proposition 1.2.13. Suppose that $P(c)$ is upper limit, i.e., $P(c)=$ $\cup\left\{P_{\mu} \mid P_{\mu} \in \mathrm{G}-\operatorname{Spec}(R)\right.$ such that $\left.P_{\mu} \subset P(c)\right\}$. Then there is a P_{μ} with $P_{\mu} \ni c$. This contradicts the choice of $P(c)$. Hence $P(c) \supset P=\cup\left\{P_{\mu} \mid P(c) \supset P_{\mu}\right\}$ is a prime segment which must be Archimedean by Theorem 3.1.5. Since $c \in P(c) \backslash P$ and c is regular, we have $c P(c)=P(c) c$ by Lemma 3.1.4. Hence R is locally invariant.

We say that R is invariant if $c R c^{-1}=R$ for any regular element c in R and that it is of rank n if there are exactly n Goldie prime ideals. From Lemma 3.1.4, we have

Proposition 3.1.7. Suppose that R is Archimedean and is of rank one. Then it is invariant.

Proof. Let c be any regular element and let c_{1} be any regular element in $J(R)$. Then we have $c R c^{-1}=c c_{1} R\left(c c_{1}\right)^{-1}=R$ by Lemma 3.1.4, because $c_{1}, c c_{1} \in J(R)$.

3.2. Examples

We will give several examples of fully bounded Dubrovin valuation rings.

Example 3.2.1. Any Dubrovin valuation ring of a simple Artinian ring with finite dimension over its center is fully bounded.

Example 3.2.2. Any invariant valuation ring of a division ring is fully bounded (see [XKM, (Remarks to Examples 2.1 and 2.4)] for invariant valuation rings of division rings with infinite dimensions over its centers).

In order to give more general examples, we recall the skew polynomial ring $Q[x, \sigma]$ over Q in an indeterminate x, where $\sigma \in \operatorname{Aut}(Q)$. Since $Q[x, \sigma]$ is a principal ideal ring, the maximal ideal $P=x Q[x, \sigma]$ is localizable, i.e., $T=Q[x, \sigma]_{P}=\{f(x)$ $c(x)^{-1} \mid f(x) \in Q[x, \sigma]$ and $\left.c(x) \in C(P)\right\}$, the localization of $Q[x, \sigma]$ at P, is a Noetherian Dubrovin valuation ring with $J(T)=x T$. Since Q is a simple Artinian ring, $C(P)=\{c(x)$ $\in Q[x, \sigma] \mid c(x)=c_{0}+c_{1} x+\ldots+c_{n} x^{n}$ such that c_{0} is a unit in $\left.Q\right\}$. For any $t=f(x)$ $c(x)^{-1} \in T$, where $f(x)=f_{0}+f_{1} x+\ldots+f_{l} x^{l}$ and $c(x)=c_{0}+c_{1} x+\ldots+c_{n} x^{n}$, the map φ : $T \rightarrow Q$ defined by $\varphi(t)=f_{0} c_{0}{ }^{-1}$ is a ring epimorphism. Now let R be a Dubrovin valuation ring of Q. Then, by [XKM, (1.6)], $\tilde{R}=\varphi^{-1}(\mathrm{R})$, the complete inverse image of R by φ, is a Dubrovin valuation ring of $Q(x, \sigma)(Q(x, \sigma)$ stands for the quotient ring of $Q[x, \sigma])$. Furthermore, let $P=\wp \tilde{R}(\wp \in \operatorname{Spec}(R))$. Then $P \in \operatorname{Spec}(\tilde{R})$ and $\tilde{R} / P \cong$ R / \wp by [XKM, (1.6)] and its proof. Thus it follows from [XKM, (1.6)] that \tilde{R} is fully bounded iff R is fully bounded. Hence we have

Example 3.2.3. With notation above, suppose that R is a fully bounded Dubrovin valuation ring of Q and that σ is of infinite order ([XKM, (Examples 2.1-2.6, 2.7 and 2.8)]). Then \tilde{R} is a fully bounded Dubrovin valuation ring of $Q(x, \sigma)$ and $Q(x, \sigma)$ is of infinite dimensional over the center.

Finally, we give a few remarks on non-fully bounded total valuation rings: An example of a total valuation ring with a simple segment was first constructed by [Mt]. See [BT] for other examples of total valuation rings with simple segments. Dubrovin constructed an example of a total valuation ring with an exceptional prime segment ([D $\left.\mathrm{D}_{3}\right]$).

CHAPTER 4

Non-commutative \boldsymbol{v}-Bezout rings

Throughout this chapter, V will be a total valuation ring of a division ring K, i.e., for any nonzero $k \in K$, either $k \in V$ or $k^{-1} \in V$. Let Q_{0} be the semigroup of nonnegative rational numbers and σ be a semigroup homomorphism from Q_{0} to $\operatorname{Aut}(V)$, the group of automorphism of V, i.e., $\sigma(r+s)=\sigma(r) . \sigma(s)$ for any $r, s \in \mathrm{Q}_{0}$. Furthermore, $R=V\left[x^{r}, \sigma \mid r \in \mathrm{Q}_{0}\right]$ is a skew semigroup ring of Q_{0} over V, i.e., it is a ring with left V-basis $\left\{x^{r} \mid r \in \mathrm{Q}_{0}\right\}$. Each element of R is uniquely a finite sum $a_{1} x^{n}+\ldots+a_{k} x^{x_{k}}$ with $a_{i} \in V$. The multiplication is defined by $x^{r} a=\sigma(r)\left(\right.$ a) x^{r} for any a $\in V$ and $r \in \mathrm{Q}_{0}$. Since σ is naturally extended to a semigroup homomorphism from Q_{0} to $\operatorname{Aut}(K)$, we have $T=K\left[x^{r}, \sigma \mid r \in \mathrm{Q}_{0}\right]$ is a skew semigroup ring of Q_{0} over K.

In Section 1, we prove that $\left.R=\ \backslash x^{r}, \sigma \mid r \in \mathrm{Q}_{0}\right\rfloor$ is v-Bezout, which is defined in [Ma] and is a non-commutative version of commutative GCD-domains.

In Section 2, we give some examples of non-commutative v-Bezout rings with some types of automorphisms.

4.1. Non- commutative \boldsymbol{v}-Bezout rings

Let S be an Ore domain with its quotient ring Q and let $I(J)$ be a right (left) S ideal. We use the following notation [MMU]: $(S: I)_{l}=\{q \in Q \mid q I \subseteq S\},(S: J)_{r}=\{q \in$ $Q \mid J q \subseteq S\}, I_{v}=\left(\mathrm{S}:\left(S: D_{l}\right)_{r}\right.$ and ${ }_{v} J=\left(\mathrm{S}:\left(S: J_{r}\right)_{l}\right.$. It is clear that $I_{v}\left({ }_{v} J\right)$ is a right (left) S-ideal containing $I(J)$, respectively. If $I=I_{v}\left(J={ }_{v} J\right)$, then it is called a right (left) v-ideal. An Ore domain S is called right v-Bezout if I_{v} is a principal for any finitely generated right ideal I of S. Similarly, we can define left v-Bezout and S is said to be v-Bezout if it is right v-Bezout as well as left v-Bezout.

A partially ordered set Λ with ordering \geq is called an ascending net if for any λ_{1}, λ_{2} in Λ, there is a $\lambda \in \Lambda$ with $\lambda_{i} \leq \lambda(i=1,2)$. Then we have the following lemma.

Lemma 4.1.1. Let Λ be an ascending net and let R_{λ} be an Ore domain with its quotient division ring K_{λ}, for each $\lambda \in \Lambda$. Suppose that $R_{\mu} \subseteq R_{\lambda}$ if $\mu \leq \lambda$. Set $R=$ $\cup\left\{R_{\lambda} \mid \lambda \in \Lambda\right\}$ and $K=\cup\left\{K_{\lambda} \mid \lambda \in \Lambda\right\}$. Then
(1) K is a quotient ring of R which is a division ring.
(2) If R_{λ} is a Bezout ringfor all $\lambda \in \Lambda$, then so is R.
(3) Let P_{λ} be a completely prime ideal of R_{λ}, which is localizable for any $\lambda \in \Lambda$. Suppose that $P_{\lambda} \cap R_{\mu}=P_{\mu}$ if $\lambda \geq \mu$. Then
(a) $P=\cup\left\{P_{\lambda} \mid \lambda \in \Lambda\right\}$ is a completely prime ideal of R and is localizable.
(b) $R_{P}=\cup\left\{R_{\lambda \rho_{\lambda}} \mid \lambda \in \Lambda\right\}$.
(c) If $R_{\lambda_{p_{\lambda}}}$ is a total valuation ring for all $\lambda \in \Lambda$, then so is R_{P}.

Let N be the set of natural numbers. Then it is considered an ascending net in the following obvious way: $n \geq m$ iff $\left.m\right|_{n}$ for any $m, n \in \mathrm{~N}$. Let $R_{n}=V\left[x^{\frac{1}{n}}, \sigma\right]=$ $\left\{\left.a_{k} x^{\frac{k}{n}}+\ldots+a_{1} x^{\frac{1}{n}}+a_{0} \right\rvert\, a_{i} \in V\right\}$. Then R_{n} is considered as a skew polynomial ring over V in the indeterminate $x^{\frac{1}{n}}$ with $x^{\frac{1}{n}} a=\sigma\left(\frac{1}{n}\right)(a) x^{\frac{1}{n}}$ for any $a \in V$. Let $P_{n}=J(V)$ [$\left.x^{\frac{1}{n}}, \sigma\right]$, a completely prime ideal of R_{n} and it is localizable such that $R_{n_{\rho_{n}}}$ is a total valuation ring of $K\left(x^{\frac{1}{n}}, \sigma\right)$ (see [BT]). Obviously, $R_{n} \supseteq R_{m}$ and $P_{m}=P_{n} \cap R_{m}$ if $n \geq$ m. Furthermore, $P=J(V)\left[x^{r}, \sigma \mid r \in \mathrm{Q}_{0}\right]=\cup\left\{P_{n} \mid n \in \mathrm{~N}\right\}$. Let $R=V\left[x^{r}, \sigma \mid r \in \mathrm{Q}_{0}\right]$, $\mathrm{T}=K\left[x^{r}, \sigma \mid r \in \mathrm{Q}_{0}\right]$ and let $T_{n}=K\left[x^{\frac{1}{n}}, \sigma\right]$, be a principal ideal ring for each $n \in \mathrm{~N}$. Then it is obvious that $R=\bigcup_{n \in \square} R_{n}$ and $T=\bigcup_{n \in \square} T_{n}$. So from Lemma 4.1.1, we have the following:

Proposition 4.1.2. (1) $P=J(V)\left[x^{r}, \sigma \mid r \in \mathrm{Q}_{0}\right]$ is localizable and R_{P} is a total valuation ring with $R_{P}=\cup R_{n_{P_{n}}}$.
(2) $T=K\left[x^{r}, \sigma \mid r \in \mathrm{Q}_{0}\right]$ is a Bezout ring with its quotient ring $K\left(x^{r}, \sigma \mid r \in \mathrm{Q}_{0}\right)$.

Let δ be a left τ-derivation of V, where $\tau \in \operatorname{Aut}(V)$ and assume that (τ, δ) is compatible, i.e., $\delta(J(V)) \subseteq J(V)$. Let $S=V[x ; \tau, \delta]$ be an Ore extension over V in an indeterminate x. Then $P=J(V)[x ; \tau, \delta]$ is localizable and S_{P}, the localization of S at P, is a total valuation ring (cf. [BT]). Now let $f(x), g(x) \in S$ and let $I=S f(x)+S g(x)$. Then $S_{P} I=S_{P} a$, for some $a \in V$ and $K[x ; \tau, \delta] I=K[x ; \tau, \delta] b(x)$, for some $b(x) \in K[x ; \tau, \delta]$. There are $b \in K$ and $b_{1}(x) \in S \backslash P$ with $b(x) a^{-1}=b b_{1}(x)$. With these notations, we have the following:

Lemma 4.1.3. [Ma, (2.1) and (2.3)]. $I=S_{p} I \cap K[x ; \tau, \delta] I=S c(x)$, where $c(x)=$ $b_{1}(x) a \in S$.

By using Lemma 4.1.3, we have the following theorem which is inspired by [C, (3.5)].

Theorem 4.1.4. Let V be a total valuation ring of a division ring K. Then $R=V x^{r}, \sigma$ I $\left.r \in \mathrm{Q}_{0}\right]$ is v-Bezout, and it is not Bezout if $V \neq K$.

Proof. Let $I=R f(x)+R g(x)$, for some $f(x), g(x) \in R$. There is a natural number m such that $f(x), g(x) \in R_{m}$. Set $I_{m}=R_{m} f(x)+R_{m} g(x)$. Then by Lemma 4.1.3, there is $c(x) \in$ R_{m} with $R_{m_{P_{m}}} I_{m} \cap T_{m} I_{m}=R_{m} c(x)$, where $R_{m_{P_{m}}} I_{m}=R_{m_{P_{m}}} a(a \in V), T_{m} I_{m}=T_{m} b(x)$ $\left(b(x) \in T_{m}\right), b(x) a^{-1}=b b_{1}(x)\left(b \in K, b_{1}(x) \in R_{m} \backslash P_{m}\right)$ and $c(x)=b_{1}(x) a$. For any natural number n with $\left.m\right|_{n}$, we have $R_{n_{P_{n}}} I_{n}=R_{n P_{n}} a$ and $T_{n} I_{n}=T_{n} b(x)$ and so ${ }_{v} I_{n}=$ $R_{n_{p_{n}}} I_{n} \cap T_{n} I_{n}=R_{n} c(x)$ by Lemma 4.1.3. Since $f(x), g(x) \in R_{m} c(x) \subseteq R c(x)$, it follows
that $I \subseteq R c(x)$. Suppose that $I \subseteq R \alpha$ for some $\alpha \in K\left(x^{r}, \sigma \mid r \in \mathrm{Q}_{0}\right)$. Then $\alpha \in K\left(x^{\frac{1}{n}}\right.$, σ), the quotient ring of T_{n}, for some n and we assume that $\left.m\right|_{n}$. It follows that $I_{n} \subseteq$ $R \alpha \cap K\left(x^{\frac{1}{n}}, \sigma\right)=R_{m} \alpha$ and so $R_{n} c(x)={ }_{v} I_{n} \subseteq R_{n} \alpha$. Thus $R c(x) \subseteq R \alpha$ and hence ${ }_{v} I=$ $R c(x)$ follows. If $J=J_{1}+J_{2}$, where J_{1} and J_{2} are left ideals of R, then it is easy to check that ${ }_{v} J={ }_{v}\left({ }_{v} J_{1}+J_{2}\right)={ }_{v}\left({ }_{v} J_{1}+{ }_{v} J_{2}\right)$ and so R is left v-Bezout by induction on generators. Similarly, R is right v-Bezout.

Now, suppose that $\left.R=\eta x^{r}, \sigma \mid r \in \mathrm{Q}_{0}\right]$ is left Bezout. Let α be a non-unit element in $V \backslash\{0\}$. Then there exists $h(x) \in R$ such that $R \alpha+R x=R h(x)$. We have $\alpha=$ $a(x) h(x)$ and $x=b(x) h(x)$ for some $a(x), b(x) \in R$. Then it follows that $h(x)$ is constant, say, $h(x)=c$ and $b(x)=b_{1} x$ for some $b_{1} \in V$. Thus $1=b_{1} \sigma(1)(c)$ and so c is unit in V. Then $R \alpha+R x=R h(x)=R c=R$ implies that α is unit in V, a contradiction. Hence R is not left Bezout.

4.2. Examples

Finally, we will give several examples of skew semigroup ring of Q_{0} over total valuation rings.

Example 4.2.1 (trivial case, $\sigma=1$). $\left.R=V x^{r} \mid r \in \mathrm{Q}_{0}\right]$ is v-Bezout, where V is any total valuation ring.

In order to provide non-trivial examples, let $K=F\left(\left\{Y_{t}\right\} \mid t \in \mathrm{Q}\right)$ be the rational function field over a field F in indeterminates $\left\{Y_{t} \mid t \in \mathrm{Q}\right\}$, where Q is the field of rationals. For any $r \in \mathrm{Q}_{0}$, let $\sigma_{r} \in \operatorname{Aut}(K)$ determined by; $\sigma_{r}(a)=a$ for any $a \in F$ and $\sigma_{r}\left(Y_{t}\right)=Y_{t+r}$ for any $t \in \mathrm{Q}$. Furthermore, let v be the valuation of K determined by $v(a)=0$ for all $a \in F$ and $v\left(Y_{t}\right)=1$ for all $t \in \mathrm{Q}$. Then $V=\{k \in K \mid v(k) \geq 0\}$ is a discrete rank one valuation ring of K. It is easy to see that $\sigma_{r}(V)=V$ for any $r \in \mathrm{Q}_{0}$
and $\sigma_{r+s}=\sigma_{r} \cdot \sigma_{s}$. Hence the mapping $\sigma: \mathrm{Q}_{0} \rightarrow \operatorname{Aut}(V)$ defined by $\sigma(r)=\sigma_{r}$ for any $r \in \mathrm{Q}_{0}$ is a semigroup homomorphism.

Example 4.2.2. With the notation and assumption the above, $\left.R=V x^{r} \mid r \in \mathrm{Q}_{0}\right]$ is v Bezout which is not Bezout.

In order to get another example which is not discrete rank one valuation ring, let $G=\oplus \mathrm{Z}_{r}\left(r \in \mathrm{Q}, \mathrm{Z}_{r}=\mathrm{Z}\right)$, the direct sum of the copies Z , which is a totally ordered abelian group by lexicographic ordering and let K and σ_{r} be as in Example 4.2.2. We define a valuation of K as follows: $v(a)=0$ for all $a \in F$ and $v\left(Y_{t}\right)=(\ldots, 0,1,0, \ldots) \in$ G, the t-th component is 1 and the other components are all zero. Then $V=\{k \in K \mid$ $v(k) \geq 0\}$ is a valuation ring of K with infinite rank and $J(V)=J(V)^{2}$. It is not hard to see that $\sigma_{r}(V)=V$ for all $r \in \mathrm{Q}_{0}$. Hence, we have

Example 4.2.3. $\left.R=\ x^{r} \mid r \in \mathrm{Q}_{0}\right]$ is v-Bezout, where V is commutative valuation ring with infinite rank and $J(V)=J(V)^{2}$.

In order to give an example of non-commutative valuation rings, let be V_{0} be any total valuation ring of a division ring K_{0} and $G=\left\langle g_{r} \mid r \in \mathrm{Q}\right\rangle$ be a group which is isomorphic to Q , i.e., $g_{r} \cdot g_{s}=g_{r+s}$ for any $r, s \in \mathrm{Q}$. Since G is abelian, the group ring $V_{0}[G]$ and $K_{0}[G]$ have the same quotient ring $K_{0}(G)$ which is a division ring. As before, for any $r \in \mathrm{Q}_{0}$ we define an automorphism σ_{r} of $K_{0}(G)$ as follows: $\sigma_{r}(a)=a$ for all $a \in K_{0}$ and $\sigma_{r}\left(g_{t}\right)=g_{t+r}$ for any $t \in \mathrm{Q}$. Now $J\left(V_{0}\right)[G]$ is localizable and $V=$ $V_{0}[G]_{J\left(V_{0}\right)(G)}$ is a total valuation ring of $K_{0}(G)$ (see [BMO, (2.6)]). Since $\sigma_{r}(J(V)[G])=$ $J(V)[G], \sigma_{r}$ is considered as an automorphism of V with $\sigma_{r+s}=\sigma_{r}: \sigma_{s}$ for any $r, s \in$ Q_{0}. So the mapping $\sigma: \mathrm{Q}_{0} \rightarrow \operatorname{Aut}(V)$ given by $\sigma(r)=\sigma_{r}$ for any $r \in \mathrm{Q}_{0}$ is a semigroup homomorphism.
 Bezout but not Bezout.

CHAPTER 5

Overrings of Non-commutative Prufer rings satisfying a polynomial identity

In [AD], they defined the concept of non-commutative Prüfer rings in the context of prime Goldie rings and studied the structure of Prüfer rings. In the case when prime rings satisfying a polynomial identity (PI), Morandi studied PI Prüfer rings under some conditions such as; integral over its center or the center is commutative Priufer. Furthermore, Dubrovin $\left[D_{2}\right]$ proved that any prime ideal of a PI Prüfer ring is localizable.

In Section 1, we describe the properties of overrings of PI Pruifer rings.
In Section 2, we describe prime ideals of any overring of a PI Prüfer ring by using some results in $\left[\mathrm{D}_{2}\right]$ and $[\mathrm{Mo}]$.

We refer the readers to [MMU] for elementary properties of Prüfer rings and Dubrovin valuation rings.

5.1. Overrings of PI Prüfer rings

Throughout this chapter, R will be a prime Goldie ring with its quotient ring Q. Let I be an additive subgroup of Q. Then the right and left orders of I are defined to be $O_{r}(I)=\{q \in Q \mid I q \subseteq I\}$, and $O_{l}(I)=\{q \in Q \mid q I \subseteq I\}$. We also define $I^{-1}=$ $\{q \in Q \mid I q I \subseteq I\}$), the inverse of I. If I is a right R-submodule of Q, then I is a (fractional) right R-ideal if I contains a regular element of Q, and if there is a regular element $d \in Q$ with $d I \subseteq R$. Left R-ideals are defined similarly.

Following [AD], R is called right Prïf er if for every finitely generated right R ideal $I, I^{-1} I=R, I I^{-1}=O_{l}(I)$. A left Prüfer ring is defined similarly. It is proved in [AD, (1.12)] that R is right Prüfer if and only if it is left Prüfer. A ring is called right (left) Bezout is any finitely generated right (left) ideal is principal. We say that R is a Dubrovin valuation ring if R is Bezout and $R / J(R)$ is a simple Artinian ring, where $J(R)$ is the Jacobson radical of R. A prime ideal P of R is said to be localizable if $C(P)=\{c$ $\in R \mid c$ is regular $\bmod P\}$ is an Ore set of R. Let P be a non-zero prime ideal of a PI

Prüfer ring R. Then any element of $C(P)$ is regular, $C(P)$ is localizable and R_{P} is a Dubrovin valuation ring $\left(\left[\mathrm{D}_{2}\right]\right)$. We write $\operatorname{Spec}(R)$ for the set of all prime ideals of R.

Lemma 5.1.1. Let S be an overring of R. Suppose that S isfl at as a lef $t R$-module. Then $S \otimes_{R} S \cong S$ naturally .

Prog. For any $\alpha=\sum s_{i} \otimes t_{i}$, where $s_{i}, t_{i} \in S$, we define $\varphi(\alpha)=\sum s_{i} t_{i}$. Then there is a regular element $c \in R$ with $s_{i}=c^{-1} \overline{s_{i}}$ for some $\overline{s_{i}} \in R$. From the exact sequence $0 \rightarrow$ $S \rightarrow Q$, we derive the exact sequence $0 \rightarrow S \otimes_{R} S \rightarrow Q \otimes_{R} S$. Then $\alpha=\Sigma s_{i} \otimes t_{i}=$ $\sum c^{-1} \overline{s_{i}} \otimes t_{i}=c^{-1} \otimes \Sigma \overline{s_{i}} t_{i} \in Q \otimes_{R} S$. So if $\varphi(\alpha)=0$, then $0=\sum s_{i} t_{i}=c^{-1}\left(\sum \overline{s_{i}} t_{i}\right)$ and thus $\alpha=0$, which shows that φ is one-to-one. It is clear that φ is onto and hence φ is an isomorphism.

Let I be a right ideal of R and $s \in Q$. Then we use the following notation; $s^{-1} I$ $=\{r \in R \mid s r \in I\}$ which is a right ideal of R.

Lemma 5.1.2. Under the same notation and assumption as in Lemma 5.1.1, let I be a non-zero right ideal of R and let $s \in S$, non-zero. Then $\left(s^{-1} I\right) S=s^{-1}(I S)=\{t \in S \mid s t \in$ $I S\}$.

Proof. It is clear that $\left(s^{-1} I\right) S \subseteq s^{-1}(I S)$. To prove the converse inclusion, we consider the exact sequence $0 \rightarrow s^{-1} I \rightarrow R \xrightarrow{s_{l}} S / I$, where $s_{l}(\mathrm{r})=[s r+I]$ for all $r \in R$. Then since S is a flat left R-module, we have the following exact sequence:

$$
0 \rightarrow\left(s^{-1} I\right) \otimes_{R} S \rightarrow R \otimes_{R} S \xrightarrow{s, \otimes 1} S / I \otimes_{R} S .
$$

From the exact sequence we derive the following exact sequence:

$$
0 \rightarrow\left(s^{-1} I\right) S \rightarrow S \xrightarrow{s_{i}} S / I S,
$$

because $(S / I) \otimes_{R} S \cong\left(S \otimes_{R} S\right) /\left(I \otimes_{R} S\right) \cong S /(I S)$ by Lemma 5.1.1, which shows that $\left(s^{-1} I\right) S \supseteq s^{-1}(I S)$. Hence $\left(s^{-1} I\right) S=s^{-1}(I S)$ follows.

A family \mathscr{F} of right ideals of R is called a right Gabriel topology on R if \mathscr{F} satisfies the following two conditions:
(i) if $I \in \mathscr{F}$ and $r \in R$, then $r^{-1} I \in \mathscr{F}$, and
(ii) if $I \in \mathscr{F}$ and J is a right ideal of R such that $a^{-1} J \in \mathscr{F}$ for all $a \in I$, then $J \in \mathscr{F}$.

If \mathscr{F} is a right Gabriel topology on R, then we write $R_{\mathcal{F}}$ for the right quotient of R with respect to \mathscr{F}. Since R is a prime Goldie ring, $R_{\mathcal{F}}=\cup\left\{(R: I)_{l} \mid I \in \mathscr{F}\right\}$, where $(R: I)_{l}$ $=\{q \in Q \mid q I \subseteq R\}$. We refer the readers to [S] for elementary properties of Gabriel topology.

Proposition 5.1.3. Let S be an overring of R. Suppo se that S isflat as a lef $t R$-module. Then $\mathscr{F}(S)=\{I:$ right ideal $o f \mid I S=S\}$ is a right Gabriel topology on R and $S=R_{F(S)}$.

Proof. Let $J \in \mathscr{F}(S)$ and $r \in R(r \neq 0)$. Then $R /\left(r^{-1} I\right) \cong(r R+I) / I$ implies $\left(r^{-1} I\right) S=S$, i.e., $r^{-1} I \in \mathscr{F}(S)$, because $I S=S$. Next, let $I \in \mathscr{F}(S)$ and let J be a right ideal of R such that $\left(a^{-1} J\right) S=S$ for all $a \in I$. Then $S \supseteq J S \supseteq \sum_{a \in I} a\left(a^{-1} J\right) S=\sum_{a \in I} a S=S$. Thus $J S$ $=S$, i.e., $J \in \mathscr{F}(S)$. Hence $\mathscr{F}(S)$ is a right Gabriel topology on R.

To show that $S=R_{\mathscr{F}(S)}$, let $I \in \mathscr{F}(S)$. Then $S=R S \supseteq(R: I)_{l} I S \supseteq(R: I)_{l}$, which implies $R_{\mathscr{f}(S)} \subseteq S$. To show the converse inclusion, let $s \in S$. Then $S=s^{-1} S=\left(s^{-1} R\right) S$ by Lemma 5.1.2 and so $s^{-1} R \in \mathscr{F}(S)$ and $s \in\left(R: s^{-1} R\right)_{l} \subseteq R_{\mathcal{F}(S)}$ Hence $S=R_{\mathscr{F}(S)}$.

Corollary 5.1.4. Under the same notation and assumptions as in Proposition 5.1.3, let I^{\prime} be a right ideal of S. Then $I^{\prime}=\left(I^{\prime} \cap R\right) S$.

Since any overring of a Prüfer ring R is flat as a right R-module as well as a left R-module, we have

Corollary 5.1.5. Let S be an overring of a Prïfer ring R. Then there is a right (left) Gabriel topology $\mathscr{F}^{\left(\mathscr{F}^{\prime}\right)}$) on R such that $S=R_{\mathscr{F}}=R_{\mathscr{F}}$.

5.2. Prime ideals of overrings of a PI Prüfer ring.

In this section, we assume that R is a PI Prüfer ring. Note that R_{P} is a Dubrovin valuation ring for any $P \in \operatorname{Spec}(R)$ and that any overring of a Priufer ring is Prüfer (see [MMU, (2.6)]).

Lemma 5.2.1. Let $P \in \operatorname{Spec}(R)$ and $P_{1}{ }^{\prime} \in \operatorname{Spec}\left(R_{P}\right)$. Then $P_{1}=P_{1}{ }^{\prime} \cap R \in \operatorname{Spec}(R)$ and $R_{P_{1}}=\left(R_{P}\right)_{P_{1}^{\prime}}$.

Proof. Since $J\left(\left(R_{P}\right)_{P_{1}^{\prime}}\right) \cap R_{P}=P_{1}{ }^{\prime}$, we have $P_{1}=J\left(\left(R_{P}\right)_{P_{1}^{\prime}}\right) \cap R$ and so $P_{1} \in \operatorname{Spec}(R)$ by [Mo, (1.8)]. Since $J\left(R_{P}\right) \supseteq P_{1}{ }^{\prime}$, we have $P=J\left(R_{P}\right) \cap R \supseteq P_{1}$ and so $C(P) \supseteq C\left(P_{1}\right)$ by [MMU, (17.1)]. To prove that $C\left(P_{1}\right) \subseteq C_{R_{P}}\left(P_{1}{ }^{\prime}\right)=\left\{\alpha \in R_{P} \mid \alpha\right.$ is regular mod $\left.P_{1}{ }^{\prime}\right\}$, let $c \in C\left(P_{1}\right)$ and $c \beta \in P_{1}$ ' for some $\beta \in R_{P}$. Then there is a $d \in C(P)$ and $\beta d \in$ R, i.e., $c \beta d \in P_{1}$ and so $\beta d \in P_{1}$. Thus $\beta \in P_{1}{ }^{\prime}$ and hence $C\left(P_{1}\right) \subseteq C_{R_{p}}\left(P_{1}{ }^{\prime}\right)$. This implies that $R_{P_{1}} \subseteq\left(R_{P}\right)_{P_{1}}$. To prove the converse inclusion, we claim that $\alpha c \in C\left(P_{1}\right)$ for any $\alpha \in C_{R_{P}}\left(P_{1}{ }^{\prime}\right)$ and $c \in C(P)$ with $\alpha c \in R$. Assume that $\alpha c r \in P_{1}$ for some $r \in$ R. Then $c r \in P_{1}{ }^{\prime}$ and so $r \in P_{1}{ }^{\prime} \cap R=P_{1}$, because $C(P) \subseteq C\left(P_{1}\right) \subseteq C_{R_{P}}\left(P_{1}{ }^{\prime}\right)$. Hence $\alpha c \in C\left(P_{1}\right)$. Now, let $x \in\left(R_{P}\right)_{P_{1}}$. Then $x \beta \in R_{P}$ for some $\beta \in C_{R_{P}}\left(P_{1}{ }^{\prime}\right)$ and so $x \beta c \in$ R for some $c \in C(P)$ with $\beta c \in R$. Since $\beta c \in C\left(P_{1}\right)$, we have $x \in R_{P_{1}}$. Hence $R_{P_{1}}=$ ($\left.R_{P}\right)_{P_{1}}$, follows.

Lemma 5.2.2. Let S be an overring of R and let $P^{\prime} \in \operatorname{Spec}(S)$. Then $P=P^{\prime} \cap R \in$ $\operatorname{Spec}(R)$ and $R_{P}=S_{P^{\prime}}$.

Proof. Since $P=P^{\prime} \cap R=J\left(S_{P^{\prime}}\right) \cap S \cap R=J\left(S_{P^{\prime}}\right) \cap R$, it follows from [Mo, (1.8)] that $P \in \operatorname{Spec}(R)$. Let $c \in C(P)$ and assume that $c s \in P^{\prime}$ with $s \in S$. Then there is an I $\in \mathscr{F}(S)$ with $x I \subseteq R$ and so $c x I \subseteq P$. Thus $x I \subseteq P$ and so $x \in P^{\prime}$, which implies $C(P) \subseteq$ $C_{S}\left(P^{\prime}\right)$. Hence $R_{P} \subseteq S_{P}$. Since R_{P} is a Dubrovin valuation ring, there is a $P_{1}{ }^{\prime} \in$
$\operatorname{Spec}\left(R_{P}\right)$ with $S_{P^{\prime}}=\left(R_{P}\right)_{P_{1}^{\prime}}$, by Theorem 1.2.6. We put $P_{1}=J\left(\left(R_{P}\right)_{P_{1}^{\prime}}\right) \cap R$. Then P_{1} $=J\left(S_{P^{\prime}}\right) \cap R=P$. Hence $R_{P}=R_{P_{1}}=\left(R_{P}\right)_{P_{1}^{\prime}}=S_{P}$, by Lemma 5.2.1.

Theorem 5.2.3. Let R be a PI Priff er ring and let S be an overring of R. Then $\operatorname{Spec}(S)$ $=\{P S \mid P \in \operatorname{Spec}(R)$ with $P S \subset S\}$ and $S=\cap R_{P}$, where P runs over all $P \in \operatorname{Spec}(R)$ with $P S \subset S$.

Proof. Let $P \in \operatorname{Spec}(R)$ with $P S \subset S$ and let I^{\prime} be a maximal right ideal of S with $I^{\prime} \supseteq$ $P S$. Then $M^{\prime}=a n n_{S}\left(S / I^{\prime}\right)=\left\{s \in S \mid\left(S / I^{\prime}\right) S=0\right\}$ is a maximal ideal of S and so $P_{0}=M^{\prime}$ $\cap R \in \operatorname{Spec}(R)$ with $R_{P_{0}}=S_{M^{\prime}}$, by Lemma 5.2.2. Because of $S / M^{\prime} \cong S_{M^{\prime}} /\left(M^{\prime} S_{M^{\prime}}\right) \cong$ $Q\left(S / M^{\prime}\right)$, the quotient ring of S / M^{\prime}, we have $P S_{M^{\prime}} \subseteq I_{M^{\prime}} \subset S_{M^{\prime}}$. So if $P_{0} \geq P$, then $R_{P_{0}}$ $=P R_{P_{0}}=P S_{M^{\prime}} \subset S_{M^{\prime}}$, a contradiction. Thus $P_{0} \supseteq P$ and so $R_{P} \supseteq R_{P_{0}} \supseteq S$ by [MMU, (17.1)]. Hence $S \subseteq \cap R_{P}$, where P runs over all $P \in \operatorname{Spec}(R)$ with $P S \subset S$. Furthermore, for any $P \in \operatorname{Spec}(R)$ with $P S \subset S$, let $P^{\prime}=J\left(R_{P}\right) \cap S$. Then $P^{\prime} \in \operatorname{Spec}(S)$ by [Mo, (1.8)]. Since $P=J\left(R_{P}\right) \cap R=P^{\prime} \cap S$, it follows from Corollary 5.1.4 that $P^{\prime}=P S$. Hence $P S \in \operatorname{Spec}(S)$. Conversely, let $P^{\prime} \in \operatorname{Spec}(S)$ with $S \supset P^{\prime}$. Then $P=P^{\prime} \cap R \in$ $\operatorname{Spec}(R), P^{\prime}=P S$ and $R_{P}=S_{P}$, by Corollary 5.1.4 and Lemma 5.2.2. Hence $S=$ $\cap R_{P}$ by [MMU, (14.6)], where P runs over all $P \in \operatorname{Spec}(R)$ with $P S \subset S$ and $\operatorname{Spec}(S)=$ $\{P \in \operatorname{Spec}(R) \mid P S \subset S\}$.

Corollary 5.2.4. Let R be a PI Priff er ring and let $P_{i} \in \operatorname{Spec}(R)(i=1,2)$. Then $P_{1}+$ $P_{2}=R$ or $P_{1} \supseteq P_{2}$ or $P_{1} \subseteq P_{2}$.

Prog. Suppose that $R \supseteq P_{1}+P_{2}$. Let M be a maximal ideal of R with $M \supseteq P_{1}+P_{2}$. Then $P_{i} R_{M} \in \operatorname{Spec}\left(R_{M}\right)$ by Theorem 5.2.3 and so either $P_{1} R_{M} \supseteq P_{2} R_{M}$ or $P_{1} R_{M} \subseteq P_{2} R_{M}$ by Proposition 1.2.5. Since $C(M) \subseteq C\left(P_{i}\right)$ by [MMU, (17.1)], we have $P_{i} R_{M} \cap R=P_{i}$. Hence either $P_{1} \supseteq P_{2}$ or $P_{1} \subseteq P_{2}$.

REFERENCES

[AD] J. H. Alajbegovic and N. I. Dubrovin, Noncommutative Prüf er rings, J.Algebra 135(1990), 165-176.
[BMO] H. H. Brungs, H. Marubayashi and E. Osmanagic, A classification of prime segments in simple Artinian rings, Proc. A.M.S. 128 (2000), 3167-3175.
[BMU] H. H. Brungs, H. Marubayashi and A. Ueda, A classification of primary ideals of Dubrovin valuation rings, Houston J.Math. 29, No. 3, (2003), 595608.
[BT] H. H. Brungs and G. Törner, Extension of chain rings, Math. Z. 185 (1984), 93-104.
[C] P. M. Cohn, Free Rings and their Relations, Vol. 19, London Academic Press, 1971.
$\left[\mathrm{D}_{1}\right] \quad$ N. I. Dubrovin, Noncommutative valuation rings in simp lef initedimensional algebras over afield, Math. USSR Sbornik 51 (1985), 493 505.
[D_{2}] N. I. Dubrovin, Noncommutative Prïf er rings, Math. USSR Sbornik 74, No. 1, (1993), 1-8.
$\left[\mathrm{D}_{3}\right] \quad$ N. I. Dubrovin, The rational closure of group rings of left orderable groups, Math. Sbornik 184 (7) (1993), 3-48.
[G G_{i} Gilmer R., Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, 90 Queen's University, 1992.
[G] Gräter, Lokalinvariante prüf erringe, Results in Mathematics 9 (1986), 10 32.
[IKM] S. Irawati, S. Kobayashi and H. Marubayashi, Examples of non-commutative v-Bezout rings. JP Journal of Algebra, Number Theory and Applications 5 (3) (2005), 583-589.
[IMK] S. Irawati, H. Marubayashi, S. Kobayashi and G. Xie, A characterization of fully bounded Dubrovin Valuation Rings, Scientiae Mathematicae Japonicae, 60. No. 1 (2004), 9-14.
[IMU] S. Irawati, H. Marubayashi and A. Ueda, On R-ideals of a Dubrovin valuation rings, Communication in Algebra, vol. 32 Number 1, 2004.
[IMW] S. Irawati, H. Marubayashi and Y. Wang, Overrings of non-commutative Priffer rings satisfying a polynomial identity. JP Journal of Algebra, Number Theory and Applications 6 (2) (2006), 213-219.
[MMU] H. Marubayashi, H. Miyamoto and A. Ueda, Non-commutative valuation rings and semi-hereditary orders, K-Monographs in Math. 3, Kluwer Academic Publishers, 1997.
[Ma] H. Marubayashi, Ore extensions over total valuation rings, preprint.
[Mt] K. Mathiak, Bewertungen nichtkommutativen Korper, J. Algebra 48 (1977), 217-235.
[MR] McConnell, J. C. and Robson, J. C., Non-commutative Noetherian Rings, Pure and Applied Mathematics, A Wiley-Interscience Publication, 1987.
[Mo] P. J. Morandi, Noncommutative Prifer rings satifying a polynomial identity, J. Algebra 161 (1993), 324-341.
[Sc] Schilling, O. F. G., The Theory of Valuations, Math. Surveys and Monograph, 4, Amer. Math. Soc. Providence, 1950.
[St] B. Stenström, Rings of Quotients, Springer-Verlag, 21, 1975.
[XKM] G. Xie, S. Kobayashi, H. Marubayashi, N. Pupescu and C. Vraciu, Noncommutative valuation rings of the quotient Artinian ring of a skew polynomial ring, to appear in Algebras and Representation Theory.

