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Introduction

During the last twenty years the theory of non-commutative valuation rings has
been developed by many authors for different reasons. The main progress in thé general
theory has been made after N. I. Dubrovin introduced his new type of valuation rings
which are called Dubrovin valuation rings. These rings are not only defined for division
rings but also for simple Artinian rings especially for central simple algebras. As we
know, there are three types of non-commutative valuation rings, which are called total

valuation rings, invariant valuation rings and Dubrovin valuation rings.

Let K be a division ring. A subring ¥ of K is called rotal valuation ring of K if
for any non-zero element g € X, either g € V or a~' e V. A total valuation ring J of a
division ring K is called an invariant valuation ring if aV’= Va for all ¢ € K. An order R
in a simple Artinian ring Q is called a Dubrovin valuation ring of Q if R is Bezout and
R/J(R) is simple Artinian, where J(R) is the Jacobson radical of R. We see that every
invariant valuation ring and every total valuation ring V is clearly a Dubrovin valuation

ring. However, the converse is not necessarily true.

In this thesis, we study about non-commutative valuation rings in particular
about Dubrovin valuation rings and their global theories, say Priifer rings. Moreover,
we give some examples of y-Bezout rings which are the generalization of commutative

GCD-domains.

In Chapter 1, we give some elementary properties of non-commutative valuation
rings, which are used in the next Chapters. We refer to [MMU] for details concerning

with orders, Dubrovin valuation rings, Priifer orders and primary ideals.

Let R be an order in a ring Q. A right R-submodule 7 of Q is called a right R-
ideal of Q if (i) I ~ U(Q) # &, where U(Q) is the unit group of Q and (ii) there exists ¢
e U(Q) such that cI < R. A lgft R-ideal of Q is déﬁned similarly. A right and left R-
ideal is called an R-ideal. For a right R-ideal 7 of Q, we set O,(I)= {g € Q] Iq g 1},



the right order of I and O (I)={q € Q] gl c1}, the lgft order of I. An element ¢ in Q

is called a right stabilizing element of R if c¢R is an R-ideal and we denote by r-st(R) =
{ceQ | R is right stabilizing}. We say that ¢ is stabilizing if cR = Rc and denote by

st(R) = {ceQ | ¢ is stabilizing}. For any ideal / of a ring R, we denote by ﬁ =
N{P| P e Spec(R) with P o I} the prime radical of I which is a semi-prime ideal. An
ideal 4 of R is called right ﬁ —primary if aRb < A, where a, beR, implies either ae A4

or be ﬁ . Similarly, left primary ideals are defined. In [BMU], they have described all

right primary ideals of R.

In Chapter 2, we investigate the structure of all R-ideals by usage of stabilizing
elements and primary ideals by using some results from [BMU]. If / is an R-ideal and J

is not finitely generated as a right R-ideal such that O () =S = O,(I) and suppose that

J(S) is Archimedean, it is proved that ] = ¢4 for some ce st(S) and 4, a right and left
J(S)-primary ideal (see Theorem 2.2.3). In the case Q is finite dimensional over its
center, we obtain: (1) If [ is finitely generated as a right R-ideal, then 7 = ¢cR = Rc for
sdme ce st(R), (2) If I is not finitely generated as a right R-ideal such that J(S) is
Archimedean, then ] = ¢4 = Ac for some ce st(S) and 4, a right and left J(S)-primary
ideal, (3) If ] is not finitely generated as a right R-ideal such that J(S) is limit prime, then
1 is one of the following three; J = ¢S = Sc¢ for some ce st(S), I = ¢J(R) = J(R)c for

some ce st(R) and /= (¢, R, for some ¢, € st(R, ), where R, = R, and P, runs over

all Archimedean prime ideals with P, J(S) (see Proposition 2.2.4). Furthermore, a

counter example is given to show that Proposition 2.2.2 (2)(a) is not necessarily held if

Q is infinite dimensional over its center.

A ring is called right (lI¢ft) bounded if any essential right (left) ideal contains a
non-zero (two-sided) ideal. A ring is just called bounded if it is both right bounded and
left bounded. Let S be a ring. We say that S is fully bounded if S/P is bounded for any
prime ideal P of S. Let R be a Dubrovin valuation ring in a simple Artinian ring ( and

let P € G-Spec(R), the set of all Goldie prime ideals of R, with P # J(R) and set P, =



N P,l‘ P, € G-Spec(R) with P, > P}. Then, in [BMO,(6)], they have shown that the
following four cases onlyioccur:

() Pislower limit, i.e., P = P,. Otherwise, P,> P is a prime segment.

(2) P,o P is Archimedean.

(3) P> Pis simple.

(4) P, o P is exceptional, i.e., there exists a non-Goldie prime ideal C such that 2, >

Co>P.

In Chapter 3, we investigate those results under an additional condition that R is
fully bounded. It is shown that for a Dubrovin valuation ring R of a simple Artinian ring

O, R is fully bounded iff (1) and (2) only hold.

Moreover, for any regular element ¢ in J(R), we define P(c) = n{ PA[ P, e G-

Spec(R) with ¢ € P, }, a Goldie prime ideal. R is called locally invariant if cP(c) =

P(c)c for any regular element ¢ in .J(R). Let R be a Dubrovin valuation ring of a simple

Artinian ring Q. It is shown that R is fully bounded if and only if it is locally invariant.

If Q is of finite dimensional over its center, then R is always fully bounded. In
the end of this chapter, we give several examples of fully bounded Dubrovin valuation

rings of O with infinite dimension over its center.

In Chapter 4, we study non-commutative GCD-domains. An Ore domain S is
called right (Ig9) v-Bezout if I, is a principal for any finitely generated right ideal 7 of S.
S is said to be v-Bezout if it is right v-Bezout as well as left v-Bezout. This ring is a non-
commutative version of a commutative GCD-domain. In the commutative rings, [Gi]
proved if R is a GCD domain, so is R[x]. Inspired by [Gi], we prove if V' is a total

valuation ring of a division ring X, then R = V[x",c |7 e Q,] is v-Bezout where Q,

the set of non-negative rational numbers, ¢: Q ,— Aut(}) is defined by ¢ (» + 5) =



o(r).o(s) for any », s € Q,, and the multiplication in R is defined by x"a = o(r)(a)

x"foranyg e Vandr e Q,.

In Chapter 5, we study prime ideals of any overring of a non-commutative PI
Priifer ring. We define /7'={geQ ‘ IgI c1}), the inverse of I. Following [AD], R is
called right Prifer if for every finitely generated right R-ideal 1, /I =R, I]™ =
O,(I). Left Prifer rings are defined similarly. In [D,], he proved that any prime ideal of

a PI Priifer ring is localizable. In the case when prime rings satisfying a PI, [Mo] studied
PI Priifer rings under some conditions. By using some results in [D,] and [Mo], we shall
prove if Sis an overring ofa prime Goldie ring R and suppose that R is Priifer satisfying

a polynomial identity, then Spec(S) = {PS | P e Spec(R) with PS < S}and S=NR,,

where P runs over all Pe Spec(R) with PS < S.



CHAPTER 1

Some elementary properties

In this chapter, we give some elementary properties of orders, non-commutative
Dubrovin valuation rings and Priifer orders. We refer to [MMU] and [MR] for details

concerning with orders.

1.1. Some elementary properties of orders

In this section, we give some definitions, notations and elementary propefties of
orders. For a ring R, we denote by U(R) the set of all units of R and by C,, (0) the set of
all regular elements (that is, non-zero divisors) of R.

Let C be a multiplicatively closed subset of a ring R. We say that R satisies the
right Ore condition with respect to C or that C is called a right Ore set ¢f R if, for any
a€ R and ce C, there exist be R and de C such that ad = ¢b. If C < C,(0), then it is
called a regular right Ore set f R. Similarly, we can define a (regular) left Ore set of
R. If C is a (regular) right and left Ore set of R, then it is simply called (regular) Ore set
of R.

Let C be a regular right Ore set of a ring R. An overring 7 of R is called the
right quotient ring f R with respect to C if
(1) ce U(T) for any ce C and
(ii) for any g € T, there exist ge R and ce C such that g = ac™.

We denote the ring 7'by R.. We note that for a multiplicative subset C of R with C ¢
C(0), the right quotient ring R. of R with respect to C exists if and only if C is a
regular right Ore set of R (MR, Chap. 2]).

A subring R of aring Q is called a right order in Q if Q is the right quotient ring
of R with respect to C, (0), and sometimes we denote the ring Q by O(R). In particular,
R is a right order in Q if and only if C,(0) is a right Ore set of R. Similarly, we can
define a J¢ft order in Q and a ring which is both a right and left order in Q is called an

order in Q.



Let R be aring and let M be a right R-module. An R-submodule 7 of M is called
essential £ L N N # 0 for any non-zero R-submodule N of M. By Zorn’s lemma, we
note that for any R-submodule L of M, there exists an R-submodule 1’ of M such that [
N L’ =0and L @ L’ is essential in‘M (IMR, (2.2.2(v))D. If a right ideal J of R is an
essential R-submodule of R, then [ is called an essential right ideal. A right R-module U
is éaid to be unj orm if, for any non-zero R-submodule U, and U, of U, U, N U, %0,
that is, any non-zero R-submodule of U is an essential R-submodule of U.

A right R—inodule M is said to have finite Goldie dimension if it contains no

infinite direct sum of non-zero R-submodules. For any subset X of R, we set r, (X) =
{ae R | Xa'= 0} and call it the right annihilator ¢ X. Sometimes we denote 7, (X) by

rX). The left annihilator f X is defined similarly. A ring R is called a right Goldie ring
if R satisfies the ascending chain condition (acc) on right annihilators and has finite
Goldie dimension as a right R-module. A [¢ft Goldie ring is defined similarly and R is
called a Goldie ringif Ris a ﬁght and left Goldie ring. We have the following property
(IMMU, (1.1)D).

Theorem 1.1.1. Let R be a ring. Then the following is equivalent:
(i) R is a (semi)-prime right Goldie ring.
(i) R has a right quotient ring Q which is (semi)-simple Artinian, that is, R is a right

order in a (semi)- simple Artinian Q.

Let R be an order in a ring Q. A right R-submodule 7 of Q is called a right R-
ideal f Q it I N U(Q) + O and there exists ce U(Q) such that ¢/ c R. A right R-ideal J
of Qs said to be integral if I  R. Similarly, we can define a l¢ft R-ideal f Q. A right
and left R-ideal is called an R-ideal.

Let R an order in a ring (. For any subsets X and Y of O, we set (X : Y)l=
{qgeQ|q¥cX, X:7),={qeQ|¥gcX }and X'={ge Q| XgX cX }. For a
right R-ideal 7 of Q, we set O.(I)= (I:1),={qe QI Iq <1} and we called it the right

order f I. The left order of Iis defined similarly. A right and left R-ideal is called an R-
ideal. Then we have the following lemma ({MMU, 1.2]).



Lemma 1.1.2. ¥ R is an order in a ring Q and I is a right R-ideal f Q, then
(1) 0.(DandO,(I) are orders in Q,

(2) I isaleg't O,(I)—ideal and a right O,(1)—ideal, and

(3) (R:D), is algt R-ideal and a right O,(I)—ideal.

1.2. Some elementary properties of Dubrovin valuation rings

In this section, we give some elementary characterizations of Dubrovin valuation
rings and its ideal theory.

Let D be a division ring, (G, +) be a totally ordered group and let U(D) be the
set of all units in D. A sugjective mapping v: (D) — G is called a valuation on D if it is
satisfying ([Sc]):

(1) For any a, b € D, v(ab) = v(a).+ v(b).

(2) v(at b) 2min { w(a), v(b) } if b+ —a.

If v is a valuation on D, then V= { g eU(D) ‘ v(g) >0 } u {0}. Then Vis an invariant

valuation ring. In this case G is called value group of V.

A ring R is called right Bezout if any finitely generated right ideal of R is
principal. The left Bezout is defined similarly. ‘A ring R is called Bezout if it is right and
left Bezout.

Let R be a subring of aring S. R is called a right n-chain ring in S if for any n+1
elements q,, a,, ..., a, in S, there is an ; such that g, Ezk# a,R. A right p-chain ring
in itself is called a right n-chain ring. A lgft n-chain ring is defined similarly. An n-

chain ring is a right and left n-chain ring. Then we have the following properties

(IMMU, (5.8), (5.11) and (5.12)]).

Lemma 1.2.1. Let R be a semi-simple ring, that is, J(R) = 0. Then R is Artinian f and

only f R is a right n-chain ringfor some n.



Theorem 1.2.2. Let R be a subring of a simple Artinian ring Q. Then the following
conditions are equivalent:

(1) R is a Dubrovin valuation ring of Q.

(2) R is a local semi-hereditary order in Q.

(3) R is alocal Bezout order in Q.

(4) R is a local n-chain ring in Of or some n with d(R) >n, where R = R/J(R).

Corollary 1.2.3. Let R be a Dubrovin valuation ring of Q and let P be a prime ideal of
R. ¥ R/P is a prime Goldie ring, then R/P is also a Dubrovin valuation ring o its

classical quotient ring.

Lemma 1.2.4. ((IMMU, (6.3)]). Let R be a Dubrovin valuation ring of Q and let T,
- T, be right R-submodules of Q such that (1) T, is regular and (2) there exists a subring
Sof O,T,)= {qge QI qT, T, } such that for any regular elements t, and t, € T,
there is a regular element t € T, with St,+ St,  St. Then eitherT,= T, or t,J(R) 2 T,

for some regular element t, €T, .
By using Lemma 1.2.4, we have the following Proposition ((MMU, (6.4)])

Proposition 1.2.5. Let R be a Dubrovin valuation ring of Q and let S be a Bezout
order in Q. Then the set of regular left S- and right R-submodules of Q is linearly
ordered by inclusion. In particular, the set o all R-ideals of Q is linearly ordered by

inclusion.

Let P be a prime ideal of a ring S. If C(P) = {ce S ‘ ¢ : regular mod P} is a
regular Ore set of S then the quotient ring S, of S with respect to C(P) is denoted by

S, and is called the Jocalization of S at P. Let R be a Dubrovin valuation ring of a

simple Artinian ring Q and let S be an overring of R. Then J(S) c J(R) and S is local
(IMMU, (5.3)]). Combining Lemma 1.2.1 and Theorem 1.2.2, we have ((IMMU, (6.6)])



Theorem 1.2.6. Let R be a Dubrovin valuation ring f Q and let S be an overring of R.

(D R= RIJ(S) is a Dubrovin valuation ring of S = SLI(S).
(2) S is a Dubrovin valuation ring o Q and JS) is aprime ideal f R.
(3) C,U(S) is a regular Ore set f R and S= R, -

The converse of Theorem 1.2.6 (1) also holds ((MMU, (6.16)]) as following.

Proposition 1.2.7. Let S be a Dubrovin valuation ring f Q and let R be a Dubrovin
valuation ring f S= SIJ(S). Then the set R={re S l [r+J(S)] e R } is a Dubrovin

valuation ring f Q.

Let R be a Dubrovin valuation ring of Q. Then O, ( J(R)) = O, ( J(R)) = R by
[MMU, (6.8)], which implies the following Lemmas ((MMU, (6.9) and (6.10)]).

Lemma 1.2.8. Let R be a Dubrovin valuation ring o Q , A be an R-ideal o Q and S
= 0, (4). Then thefollowing are equivalent:

(1) 4 isprincipal as a right S-ideal.

(2) 474 =S

(3) 4 2 A4J(S).

Lemma 1.2.9. Let R be a Dubrovin valuation ring f Q and let A be an R-ideal f Q.
Then O,(4)= O,(4"Yand 0,(4)= 0,(47").

Combining Lemma 1.2.4 and Lemma 1.2.9, we have

Proposition 1.2.10 ((MMU, (6.13)]). Let R be a Dubrovin valuation ring of Q and let
A be an R-ideal f Q. Set S=0,UA) and T= O, 4).

(1) 4,5 :(S:4)), =4*=*4=(T:(T:4),), and 4*= 47 .



(2) A**=4* and (47')*=4"".

(3) ¥ A4 is not aprincipal right S-ideal, then A A = JS) and XS) is not aprincipal
right S-ideal.

(4) IfA c A* , then A* = ¢S and 4 = cJ(S)f or some regular element ¢ € A*. In
particular, 4 = A* J(S).

Let I be a right R-ideal and let S = O, (J). We define /* = N ¢S, where ¢ runs
over all elements in Q with ¢S o /. Similarly, for any left R-ideal Z with T= O, (L), we

define *I, = A Te, where ¢ runs over all elements in Q with T¢ o L. The following

proposition is established by a standard method ((MMU, (6.11)]).

Proposition 1.2.11. Let R be a Dubrovin valuation ring of Q and let I be a right R-
ideal of Q. \

() Icr~

(2) gm*=1r*

() (cD* =cI* for any c € U(Q).

@ (D™ =]_lc-1for any ¢ € U(Q).

Let R be a Dubrovin valuation ring of Q. Then by [MMU, (6.8)], O, (J(R)) =

0, (J(R)) = R. If J(R) is not principal as O, (J(R))-ideal, then J(R)* = R = J(R)™ by
[MMU, (6.12)].

A prime ideal P of a ring R is called Goldie if R/P is a Goldie ring. By [MMU,
(6.8)], if R is a Dubrovin valuation ring of a simple Artinian ring Q and S is an overring
of R then J(S) is a Goldie prime ideal of R, which is localizable and R, is a Dubrovin
valuation ring with J(R, ) n R = P (IMMU, (14.5)]). We denote by B(R) the set of all

overrings of a ring R, Spec(R) the set of all prime ideals of R, and G-Spec(R) the set of
all Goldie prime ideals of R. By [MMU, (6.7) and (14.5)], we have the following

correspondence

10



Proposition 1.2.12. Let R be a Dubrovin valuation ring f a simple Artinian ring Q.
Then there exists a one-to-one correspondence between B(R) and G-Spec(R).
Let R be a Dubrovin valuation ring of a simple Artinian ring Q. Then the

intersection of Goldie prime ideals of R is also a Goldie prime ideal ((BMO, (1)])

Proposition 1.2.13. Let R be a Dubrovin valuation ring f a simple Artinian ring Q
and let P, e G-Spec(R). Then P = N P, is also in G-Spec(R).

Let R be be a Dubrovin valuation ring of a division ring XK. The following

Lemma ([MMU, (8.13)]) gives a criterion of R to be a total valuation ring.

Lemma 1.2.14. Let R be be a Dubrovin valuation ring o a division ring K. Then R is

total ff and only ¥ R = RIJR) is a division ring.

1.3. Some elementary properties of Priifer orders

In this section, we give some properties of Priifer orders. Let O be a semi-simple
Artinian ring and let R be an order 1n Q, that is, R is a semi-prime Goldie ring. R is
called a right (lgfY) Prifer order in Q if any finitely generated right (left) R—ideal is a
progenerator of Mod-R (R-Mod), that is, projective and a generator of Mod-R (R-
Mod). A Prifer order is a right and left Priifer order. By [MMU, (2.5)], a right Priifer
order in a semi-simple Artinian ring is left Priifer order.

Let R be a Priifer order in a semi-simple Artinian ring O and let S be an overring
of R, thatis, Rc S ¢ Q. Itis clear that § is an order in Q. It is proved in ([MMU,
(2.6)]) that S is also Priifer.

Proposition 1.3.1. An overring f a Prifer order in a semi-simp le Artinian ring is also

a Prifer order.

Let A be an ideal of a Priifer order R in a simple Artinian ring Q. Then any
element of C4)={ceRrR ‘ ¢ is regular modulo A} is regular ((MMU, (22.6)]). In the

11



case 4 is maximal such that R/4 is a semi-simple Artinian ring, then C(4) is an Ore set

of R and R, is a Dubrovin valuation ring of Q ([MMU, (22.7)]).

Proposition 1.3.2. Let A be an ideal of a Prifer order in a simple Artinian ring Q.
Then C(A) consists of regular elements ¢f R.

Theorem 1.3.3. Let R be a Prifer order in a simple Artinian ring Q and let A be an
ideal o R such that RIA is a semi-simple Artinian ring.
(1) CU) is a regular Ore set f R.
(2) ¥ A is a maximal ideal f R, then R, is a Dubrovin valuation ring of Q.

Dubrovin has proved the following property of Priifer order ([D,, (4)])
Proposition 1.3.4. Let R be a Prifer order in a simple Artinian ring Q and let S be a
Dubrovin valuation ring f Q containing R. Then P = J{S) N R is a prime ideal of R

such that C(P) is a regular Ore set f R and S= R, .

The following Proposition is proved by [Mo, (3.1)]

Proposition 1.3.5. Suppose S is a Dubrovin valuation ring and R is an order inS =

SIJS). ThenR={reS [ r+JS) € R} is Prifer f and only if R is Prifer.

12



CHAPTER 2

On R-ideals of a Dubrovin valuation ring R

Throughout this Chapter, we denote by R a Dubrovin valuation ring in a simple

92 e 9 6 9

Artinian ring 0. We use “c” or “>” for proper inclusion and “c” or “2” for inclusion.
For any subset X and Y of O, we set (X:7),= {ge Q| g¥YcX } and (X :V), =
{qe Q| Yg <X }. For an R-ideal I, we set I, = (R:(R:I),), and ,I = (R:(R:D),),.
I'is called a v-ideal it [, =1= I .

In Section 2.1, we give some structures of y-ideals related to the‘properties of
Jacobson radical.

In Section 2.2, it is described the structures of all R- ideals by usage of
stabilizing elements and primary ideals.

We refer to [MMU] and [BMU] for details concerning with Dubrovin valuation

rings and primary ideals.

2.1. Structure of v-ideals

For an R-ideal I, we set O.()= {qe Q‘ Ig <1}, the right order of I and

O,(=1{qe Q| ql <1}, the lg't order of I. Then we have the following

Lemma 2.1.1. Let S be aproper overring of R. Then
1) R:8), =X
@ R:J©S), =8

Progf. (1) It is clear that (R: ), 2 J(S). If (R:S), oJ(S), then (R:5), = (R:8),§=
S because (R :S), is an ideal of R and § = R, , a contradiction.

(2) It is clear that (R:J(S)), 2 S. To show the converse inclusiqn, first assume that
J(S) = sS = Ss for some s € J(S). Then we have (R:J(S)), = (R:S),s'=JSs"'= 8

by (1). Next, assume that J(S) is not finitely generated as a one-sided S-ideal. Then we

13



have J(S) = J(S)* and O,(J(S))= 8§ by [MMU, (6.8)] and Lemma 1.2.8, and it follows

that (R:J(S),c(S:J(S),= O,(J(S))=S. Hence (R:J(S)), =S.

A prime ideal P of R is said to be Goldie prime if R/P is a Goldie ring. By
Theorem 1.2.6 and Proposition 1.2.12, P is Goldie prime if and only if R, exists and is a

Dubrovin valuation ring. We note that J(S) is always Goldie prime for any overring S of

R.

Lemma 2.1.2. Let I be an R-ideal and set S = O_(I) and T= O,(I). Then
(1) ¥ 1 isfinitely generated as a right R-ideal, then (R :I),I=R.
(2) ¥ 1 is notfinitely generated as a right R-ideal, then (R 1), 1=J(S). In

Particular, (R :1),I is Goldie prime.

Progf. (1) It is clear.

(2). If I = qgS for some a € I, then S # R by assumption, and so (R:]),= (R:aS),=
(R:S),a™ =J(S)a™' by Lemma 2.1.1(1). Hence we have (R :I),]=J(S)a™ aS = J(S).
If 7 is not finitely generated as a right S-module, then 7 = J J(S) by Lemma 1.2.8. It
follows by Lemma 2.1.1(2) that (R:I), = (R:IJ(S), = (R:J(S),:D), =
(§:D,=I"" (= {xe Q| kI I}). Thus By Proposition 1.2.10 (3), J(S) = [ =

(R:D),L

An element ¢ in Q is called a right stabilizing element of R if cR is an R-ideal
and we denote by r-st(R) = {ce 0 | cR is right stabilizing }. We say that ¢ is stabilizing
is ¢cR = Rc and denote by st(R) = {c e O | ¢ is stabilizing}.

If S'is a Noetherian Priifer order in a simple Artinian ring, i.e., a Dedekind ring,
then any ideal is always a v-ideal, because it is projective. However, in non-Noetherian
case, this is not necessarily to be held. In the case of Dubrovin valuations rings, this
depends on the properties of Jacobson radical, as it will be seen in the following

proposition which is used in section 2.2.
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Proposition 2.1.3.
(1) ¥ J(R) = xR = Rxfor some x € R, then any R-ideal is a v-ideal
QFIR) =J (R)?, then { cJR) | ce r-st(R)} is the set f all non v-ideals.

Progf. Let ] be an R-ideal with / ¢ I . Then I c aJ(R) < I, for some regular element
ae I, by Lemma 1.2.4. So I, ¢ (aJ(R)),= (axR),= axR < I ,= I,. Thus I = axR
C aR c 1, and we have J(R) = xR = R, a contradiction. Hence ] = ] , and similarly we
have 7= T.

(2) By [MMU, (6.8), (6.12)] and Proposition 1.2.11, we have (c¢J(R)),= ¢(J(R)),= cR
> ¢J(R) for any ce r-st(R), and so ¢ J(R) is not a y-ideal. Conversely,\let I be an R-ideal
with / < I . Then, by Lemma 1.2.4, ] ¢ ¢/R) c I, for some regular element ce I, .
So I,= (c¢J(R)),= cR. Thus ce r-st(R). Now we shall show that ] = ¢J(R). To prove
this assume, on the contrary, that J < ¢J(R). Then there is a regular element de cJ(R)
with 7 < dJ(R) c I,. Thus, again we have I = dR, which implies de r-st(R). On thf;

other hand, since de cJ(R), we have dR < cJ(R), because dR is a y-ideal and ¢J/(R) is
not a y-ideal. Thus / =dR < c¢/(R) c I,, a contradiction. Hence I = cJ(R).

Remark. In the case Q is finite dimensional over its center, [D;] has obtained the
following ([MMU, (7.12) and (7.5)]):
(1) 0,(I)= O,I)for any R-ideal I.

(2) If cR 2 Rc for some ce Q, then cR = Ré. In particular, r-st(R) = st(R) = l-st(R)

{ceQ | cR is left stabilizing }.

(3) If ¢cR = Rc, then ¢S = Sc for an overring S of R.
However, if Q is infinite dimensional over its center, then (1) — (3) are not

necessarily to be held. For example, let (K, W) and (K,¥) be valued fields as in [XKM,
(2.5)], namely, W o ¥, ¢ € Aut (K) such that ¢ (/) = Vand ¢ (W) < W. Set S= W,=
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W+ xT and R = Vo=V + xT, where T = K[x,cr](x), the localization of K[x, o] at
maximal ideal (x)'? xKlx, c]. S and R are both Dubrovin valuation rings, in fact, they
are total valuation rings. First we note that xSx™ = o (S) = o(W) + oxT) < W+ xT =
S. By [XKM, (1.5)]; 6 (S) c S, so that xSx ™' = S. Hence ] = Sx is an ideal of § with ] >
xS. Similarly, xR = Rx, because ¢ (V) = V. Furthermore, it is easily seen that § =

o, x' Sx = O, (I) . Hence (1)-(3) are not necessarily true. In particular, xe 1- st(S)

but x¢ st(S).

2.2. R-ideals of a Dubrovin valuation ring R

For any ideal J of a Dubrovin valuation ring R of Q, we write Spec(R) for the set
of all prime ideals of R and denote ﬁ =n{P | P € Spec(R) with P o I} the pfime
radical of I which is a prime ideal ((MMU, (13.1)]). An ideal 4 of R is called right
ﬁ —primary it aRb < A, where q, beR, implies either ge A or be \/74— . Similarly,

left primary ideals are defined. In [BMU], they have described all right primary ideals of
R. So it is natural to ask the question: Describe the structure of all R-ideals by usage of
stabilizing elements and primary ideals. In this section, we give a partial answer to this
question in general case and a complete answer in the case Q is finite dimensional over

its center after a few preliminary lemmas.

Lemma 2.2.1. Let R be a Dubrovin valuation ring and let I be an R-ideal which is not

[initely generated as a right S-ideal, where S = O,(I). Then (S:1), = (R:1),.

Progf. First note that J(S) =J(S)*and so I = J J(S), by Lemma 1.2.8 and Proposition
1.2.10(3). Hence we have (R:I), = (R:1J(S)),= (R:JS),:D), = (O,(J(S): D), =

(§:I), by [MMU, (6.8)], because (R:J(S)), = O,(J(S)).

Remark. In Lemma 2.2.1, we can not drop the condition that 7 is not finitely generated

as a right S-module and J(S) =J(S)>.
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(1) If S # R and ] = gS (see the example in the Remark of Sec. 2.1), then (R D, c
Ra’ cSa'=(S:D),.

() If J(©S) 2J(S)*, then J(S) = aS, and so (R:I), < Ra™ < Sa™'= (S:I),,

where [ = gS.

A Goldie prime ideal P is Archimedean if there is a prime segment P > P, which is
Archimedean, that is, for any a € P \P,, there is an ideal ] ¢ P with g € I and P,=

NI" (see [BMO] and [BMU] for details concerning prime segments). Then we have

the following.

Lemma 2.2.2. _
(1) Suppose that J(R) is Archimedean and JR) = RxR. Then J(R) is principal.
(2) Let I be an R-ideal with S = O.(I) and T = O,(I). Suppose that I = RqR and

J(S) is Archimedean. Then I = aS = Tafor some a € I,

Progf. (1) Let J(R) > P, be the Archimedean prime segment. But % = {4 | 4 is an ideal

of Rand 4 $ x}. Then ¥ is a non-empty inductive set, and so it contains a maximal
element B. Since there are no ideals Between J(R) and B properly, B is prime if J(R)
=J(R)*. In this case, we have B = P, , which contradicts the Archimedeaness. So J(R)
>J(R)? and hence J(R) is prinéipal.

(2) To show I = gS for some g € [, it suffices to prove that [J(S) — I. Suppose that on
the contrary, 7 = [J(S). Then g = , qx,* ... + r,gx,and Sx = Sx,+ ... + Sx, , where
r,e Randx, x, € J(S), i =1, ..., n. Now, we have ] = [SxS. If J(S) = SxS, then by (1),
J(S) = sS = Ss and so [ = Is. It follows that s™' €0, (I) =8, a contradiction. Hence J(S)
> SxS and there is some\t € J(S) with J(S)t > SxS by Lemma 1.2.4. Then [ = ISxS <
IJ(S)t c It and so ¢! €0, (I) = S, a contradiction. Hence I o [J(S). Thus [ = 4§ for

somegeJand[=aSa'a= O,.(I)a = Ta follows.
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Theorem 2.2.3. Let R be a Dubrovin valuation ring in simple Artinian ring Q. Let I be
an R-ideal such that O,(I)= S= O,(I) and I is not finitely generated as a right R-

ideal. Suppose that J(S) is Archimedean. Then I = cA for some ce st(S) and A a right
and lef't J(S)primary ideal.

Progf. Let J(S) o P be an Archimedean prime segment. By Lemma 2.1.2 (2), we have
(R:D),I = J(S). Let 7 = {xe (R:D), | \[SxST = J(S)}. Then 7 = &, because J(S) is
Archimedean. First we claim that 4 = SxSI (xe ¥ ) is right and left J(S)—primary. Since
\/j4—= J(S), it suffices to prove that O (4) = § = O,(4) by [BMU, (2.5)]. It is clear
that O (4) o S.and 0,42 S If0,(4)> S, then O,(4) > R, because there are no
Goldie prime ideals between J(S) and P, and so we have 4 = BR,=R,.a ‘contradiction.
Similarly, O,(4) = S.

Next we show that U{ SxS |x e 7 } = (R:I),. Since O,.(DH=S= 0,U),
(R:I), is a right S-ideal. To show that (R :]) ,‘ is a left S-ideal, first suppose that J = gS
for some ge I. Then, by Lemma 2.1.1, (R:]), = J(S) a”' so that it is a léft S-ideal.

Suppose that 7 is not finitely generated as a right S-ideal. Then, by Lemma 2.2.1,
(R:I), is a left S-ideal. Hence SxS <(R:1), for any xe # . Suppose that y e (R :1),

but y ¢ ¥ . Then we have $ySI < P and so $yS < SxS for any x € # . This is a
contradiction and hence |J { SxS lx €7 } = (R:I), holds.

Finally we claim that O, (SxS)= Sforsomex e 7 . Supposé that O (SxS)> S
forallx € # . Then O, (SxS)2 R, and so (R:I), R, = (R:I),. |

Case 1. I = aS for some ge I. Then S = O,(I) = aS a™' and J(S) = aXS) a”'
follows. By Lemma 2.1.1 (1), (R:1), =(R:a8), = (R:8),a = JS) a'= a™' JS),
and so (R:I),=(R:I), R, = a' J(S) R, = a™ R, . Hence we have J(S) =R, , a

contradiction.
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Case 2. I is not finitely generated as a right S-ideal. Then, by Lemma 2.2.1,
I7=(R:D,and so ] R,= ]'. It follows that R, c 5,(1 MH=0,WM=S5 by
[MMU, (6.10)], a contradiction.

Hence there is some xe 7 such that O, (SxS)= S. The above discussion shows
that there exists xe 7 such that 4 = SxS7 is right and left J(S)-primary, where
0,(SxS)= S = 0,(SxS). By Lemma 2.2.2, there is some ce SxS such that SxS = ¢S =

Sc . Thus we have ce st(S) and 7= ¢4 (¢ € st(S)).

A Goldie prime ideal P is called a limit prime ideal if P = U{ P, P P, :
Goldie prime}. Suppose that Q is finite dimensional over its center. Then any prime
ideal is Goldie prime and it is either Archimedean or limit prime {see [BMO]). Also note
that an ideal is right primary if and only if it is left primary, which is called a primary
ideal (see [MMU, (13.4)]). Now we have the following proposition which describes all
R-ideals in terms of primary ideals and stabilizing elements in the case Q is finite

dimensional over its center.

Proposition 2.2.4. Let R be a Dubrovin valuation ring f a simple Artinian ring Q with
finite dimension over its center and I be an R-ideal with O.(I)=S (= O,(I)). Then
(1) Suppose that I isfinitely generated as a right R-ideal. Then I = cR = Rcfor some
ce st(R).

(2) Suppose that I is notfinitely generated as a right R-ideal.

(@  F JS) is Archimedean, then I = cA = Acfor some ce sf(S) and some J(S)-
primary ideal A.

() If HS) is limit prime, then I is one of the following three; I = ¢S = Scfor
some ce st(S), I = ¢cKR) = J(R)cfor some ce st(R) and I = (\c,R, for some

c, € st(R,), where R, = R, and P, runs over all Archimedean prime ideals

with P, c J(S).
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Progf. (1) Because R is Bezout, we have [ = ¢R for some ce st(R) and so ] = Rc by
Remark in Sec. 2.1.
(2)(a) This follows from Theorem 2.2.3 and [MMU, (7.11)].

(b) First we shall prove that J(S) = U { P, : Archimedean | P, c J(S)}. To prove this,

let x be any non-zero element in J(S) and 4 = SxS. Suppose that O (4) = T. Then 4
=yl = Ty by [MMU, (7.10)]. Thus P =\/j4_ P, = ﬂA" is an Archimedean segment
(see [BMO, (5)]) and x € P.

Case 1. I c I,. Then J(R) =J(R)? and ] = cJ(R) for some ¢ € st(R) by

Proposition 2.1.3.
Case 2. 1= 1,. Suppose that = ¢S for any ce st(S). Then, by Lemma 1.2.8, ] =

J(S) = I(U, P). I [ = [P, for some A, then § = 0,(1) 2 0,(P) = R, , 2
contradiction. So we have /R, > I > IP,. To show that O,(IR,) = R, , sﬁppose
that O (/R,)= T D R,. Then [R,= [T and s0 [T = I]TP,= IR, P, =IP,c I, a
contradiction. Hence O (JR,)= R, . So, by the similar method as in Lemma 1.2.8, we
have IR, = ¢, R, , for some ¢, € IR, because /R, =R, [ by [MMU, (6.5) and (7.11)].
Hence IR, = ¢,R, = R,c, by [MMU, (7.5)]. Thus ¢, est( R, ). To show that ] =
NIR,,let B={VIR,.Then (R:I),B c(R:I), IR, = J(S)R,= R, for any A by Lemma
212 (2). So (R:);,B < NR, = S by [BMO, (9)]. Thus B < (S:(R:I))), =
(S:(S:I),),= I,=1by Lemma 2.2.1 and Proposition 1.2.10, and hence / = () ¢, R, for

some ¢, €st(R, ).

Remark. Proposition 2.2.4 (2)(a) is not necessarily held if Q is infinite dimensional over
its center. To give a counter example, let S = W+ xT and R = V + xT be the same as in

the example of Remark in Sec. 2.1 and set / = Sx. Then O,(7)= S and [ is not finitely

generated as a left R-ideal. Assume that [ = 4¢ for some ce st(S) and some P-primary

ideal 4, where P = J(S). Then, by [XKM, (1.10)(3)], we may assume that for some ce
st(W) = K\{0}. By Remark to [XKM, (1.7)], 4 = 2 + x7 for some non-zero primary

ideal 2 = @), where ¢: T = K[x,0],,— K is the natural map with ¢ ¢(x) c(x)?) =
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foco (fx) = fot+fix+.+fx"and e(x) =c, +c,x +...+c,x™ with ¢,#0). So it

followsthat 0=xS "K=cAd N K= c,:i ,'a contradiction.
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CHAPTER 3

A characterization of fully bounded Dubrovin valuation rings

A ring is called right (lgfY) bounded if any essential right (left) ideal contains a
non-zero (two-sided) ideal. A ring is just called bounded if it is both right bounded and
left bounded. Let S be a ring. We say that S is fully bounded if S/P is bounded for any
prime ideal P of S. We write J(S) for the Jacobson radical of S and Spec(S) for the set
of all prime ideals of S.

Let R be a Dubrovin valuation ring in a simple Artinian ring Q (see [MMU,
Chap. II] for the definition and elementary properties of Dubrovin valuation rings). A
prime ideal P of R is called Goldie prime if R/P is a prime Goldie ring. We denote by
G-Spec(R) the set of all Goldie prime ideals of R. Now let P,, P € G-Spec(R) with
P, > P. The pair P, > P is called aprime segment if there are no Goldie primes properly
between P, and P.

Let P € G-Spec(R) with P # J(R) and setP,= m{PlI P, € G-Spec(R) with
P, > P}. In [BMO, (6)], they have shown that the following four cases only occur:

(1) P is lower limit, i.e., P =P, . Otherwise, P,> P is a prime segment.

(2) P, o P is Archimedean.

(3) P> Pissimple.

(4) P> Pis exceptional, i.e., there exists a non-Goldie prime ideal C such that P >
CoP.

In section 3.1, we prove that R is fully bounded iff (1) and (2) only hold (see
Theorem 3.1.5). (Note that R/J(R) is bounded, because it is a simple Artinian ring). For
any regular element ¢ in J(R), we define P(c) = " { le P, € G-Spec(R) with ce P, }, a
Goldie prime ideal ([BMO, (1)]). R is called locally invariant if ¢cP(c) = P(c)c for any
regular element ¢ in J(R). This concept was defined by Griter [G] in order to study the
approximation theorem in the case where R is a total valuation ring. We show that R is

fully bounded if and only if it is locally invariant, by using Theorem 3.1.5 (see

Proposition 3.1.6).
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In section 3.2, we give several examples of of fully bounded Dubrovin
valuation rings of Q with infinite dimension over its center. If Q is of finite

dimensional over its center, then R is always fully bounded.

3.1. Fully bounded Dubrovin valuation rings

Throughout this section, R will denote a Dubrovin valuation ring in a simple

Artinian ring Q. For any P € Spec(R), set C(P) = {ceR |c is regular mod P}. If P e

G-Spec(R), then C(P) is localizable and we denote by R, the localization of R at P.

Before starting the lemmas, we note the following: there is a one-to-one

correspondence between G-Spec(R) and the set of all overrings of R, which is given by
P >R, with P=J(R,) and § — JS) (P € G-Spec(R) and § is an overring of R).
Furthermore, for any P, P € G-Spec(R), P> PiffR, CR, (IMMU, (§ 6)] and [BMO,

(§ 2)1). We will use these properties throughout the chapter.

Lemma 3.1.1. Let S be an order in Q and A be an S-ideal such that O.(A)=T =
O,(4) where O.(4) = {qu‘ AgcA} and O,4) = {geQ \ gA cA}. Suppose

that A= aTfor some a € A. Then A= Ta.
Prod. T= O,(4)=aTa ' implies 4 = Ta.

Lemma 3.1.2. Let R be a Dubrovin valuation ring  Q and Pe G-Spec(R). Suppose
that P is lower limit, ie, P = n{P,| P, € G-Spec(R) withP,> P}. ThenR,=

UR, and C(P)=UC, .

Progf. Since P, > P, it follows that R, DR, so that R, o § = UR, . Suppose that
R, > . Then for any P, , P, = J(R, ) 2 J(S) > J(R,) = P implies P =N P, 2 J(S) >

P, a contradiction. Hence R, = UR, and so C(P) = uC(P,) follows.
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Lemma 3.1.3. Let R be a Dubrovin valuation ring  Q and P € G-Spec(R). Then
(1) Spec(R,)={P, |P e Spec(R) with P2 P, }.
(2) Let P andP,be in Spec(R) with P 2P, DP,. ThenP, P, is a prime segment

o R and only § it is aprime segment of R,, .

Progf. (1) Let P, € Spec(R,).

Case 1. If P, is Goldie prime, then (R,) p 1S anoverring of R, (and so of R) with
J((R,)p)= P, ie., P, eSpec(R)and P=J(R,) 2P, -

Case 2. If P, is non-Goldie prime, then we can construct an exceptional prime
segment of R, , say P,oP, oP, by [BMO, (6)]. Bycase 1, PoP, and P,, P, €

G-Spec(R). It easily follows from note before Lemma 3.1.1 that there are no Goldie

primes properly between P, and P, , which implies P, > P, is a prime segment of R. As
in [BMO], let K(P,) = {ac P, | P,aP,cP,}. Then K(P,) = P, by [BMO, (7)] and
so P,> P, is an exceptional prime segment of R with K(P,) = P, ie, P, is
non-Goldie prime of R with P o P,. Conversely, letP, ¢ Spec(R) with P o P, .AThen
from note before Lemma 3.1.1 and the method we have just done, we can easily see
that P, e Spec( R,) and that P, e G-Spec(R)iff P, e G-Spec( R.).

(2) This is clear from (1).

Lemma 3.1.4. Let R be a Dubrovin valuation ring o Q and P, > P be an
Archimedean prime segment. Thenfor any ce P \P, thefollowing hold:
ey R, c¢R,=aR,=R, aforsomeaeP .

(2) ¥ cis aregular element, then cR, = R, cand c¢P,=Pc.

Prog. Firstly note that P, > P is an Archimedean prime segment of R, by Lemma
3.1.3 and [BMO, (7)].

(1) Let §P1= R, /P, a Dubrovin valuation ring of 1—?;= R, /P (see Theorem 1.2.6)

such that J(R, )= P,= P,/Pand P,>(0) is Archimedean. Here forany g e R, . we
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write g for the image of g in R, . If P,=P,°, then O# R, ¢ R, = a R, =

IEPI afor some g € P by [BMU, (2.1)]. If P,5P, 2, then }Epl is a Noetherian

-~

Dubrovin valuation ring and so any ideal of ﬁpl is power ofﬁl. Thus R, c §P1=

Q1

§P1= IEPI afor some a € P,, because };1 is principal. Hence, in both cases,
R,cR, + P = aR,* P =R,a*P. However, since g EC}EP (6) = {b~E§P1 | [;is
regular in EPI }, it follows that g e CRP (P)and so g is a regular element by

Proposition 1.3.2. Thus we have aR, a' < aR, a'= R,. It follows that gR, and P
are both left g R, a'and right R, -ideals. Hence q R,> P by [MMU, (6.4)] and
similarly Rpa o P. Since R, cR, and P are both ideals of R, » it follows that
R, ¢ Ry > P. Therefore R, cR,=aR, =R, afollows.

(2) By (1), B 2R, cR,= R,a = aR, for some g e P,. Suppose that ¢R, c
R, cR,. Then, by Lemma 1.2.4, there is a b € R, cR, such that cR,cbPcaP,
because Q,(cR,) = cR, cland P = J(R,). So R, a‘lcRplg P,. On the other
hand, R, cR,= a R, implies that R, a’lcRP1 = R, a contradiction. Hence, cR, =

R, cR, and similarly R, c = R, cR, so that ¢cR, =R, c. Since cR, cl= R, and

J(R,)= P,,wehavecP,c"'= P andsocP, = P, c.

Theorem 3.1.5. Let R be a Dubrovin valuation ring f a simple Artinian ring Q. Then
R isfully bounded j and only ' for any P € Spec(R), P # J(R), thef ollowing hold:

(1) P e G-Spec(R).

(2) P is either lower limit or there is aP, € Spec(R) such thatP, > P is an

Archimedean p rime segment.

Progf. Suppose that R is fully bounded.

(1) Assume that there is a non-Goldie prime ideal C. Then we have an exceptional

prime segment, say, P, > C > P, by [BMO, (6)]. R is an n-chain ring by Theorem
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1.2.2 and so is R= R/C. This implies that R has a finite Goldie dimension, say, m (<
n). Thus there are non-zero uniform right ideals iiof R such that f]—; ®..8 ﬁ,;is
an essential right ideal of R.Since R isa prime ring, —U—'i-ﬁEQ a E¢ 0and so
there are ﬁon—zero U_, € f]_im}Tl, where u,eP,.Set]= y R+ ...+ y R.ThenI=aR
for some ge ], because R is Bezout (Theorem 1.2.2) and I = u_1 R® ... ® ;1: R=
a R is an essential right ideal of R . We claim that }_’IDY On the contrary, suppose
that P, =7,ie., P=aR+C. NotethatO,(C)= R, = O,(C) by [BMU, (2.2)] so that
C is an ideal of R, . If C is a principal right ideal of R, say, C = c R, for some ¢ €
C,then P,=aR,* cR, = bR, for some pbe P,. It follows from Lemma 3.1.1 that
P=5b R,= R, band so P> Pl2:3 C, Which contradicts to the fact that there are no
ideals properly between P, and C (cf. [BMO, (6)1). If C is not a principal right ideal
of R,,then CP,= C by Lemma 1.2.8 and so P = P’=aP, + CP,= aP, +C.
Thus we have g = gp + dfor somepe P and de C and a(1-p) = de C. It follows that
ae C, because 1-p is a unit of R, , which shows I= 0, a contradiction. We have
shown that Fl:f and [is an essential right ideal of R. Hence R is not bounded,
because there are no ideals properly between P, and C. Therefore, any prime ideal of

R is Goldie prime.
(2) Let P € G-Spec(R) and suppose that P is not lower limit. Then there is a P, e

G-Spec(R) such that P> P is a prime segmeﬁt, which is not exceptional by (1).
Suppose that this is simple. For any ce P, n C(P), it follows that ¢ Eis an essential
right ideal of R = R/P, which is a Dubrovin valuation ring of R, /P (Corollary 1.2.3).
Suppose that ¢ P,= P,,ie., cP+P= P,.Since ¢ P,and P are both left ¢R, ¢”and
right R, -ideals (note cR, c'ccR,c = R,), we have either cP,> P or cP,c P
by Proposition 1.2.5. The latter case is impossible and so ¢ P,> P. Thus ¢ P,= P and

c'e0,P)= R, follows. This is contradiction, because ce P, . Hence we have shown

that ED EE and Eflis an essential right ideal. Therefore, R is not bounded,
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because there are no ideals properly P, and (0 ). Hence either P is lower limit or there
isa P, e G-Spec(R) such that P, > P is an Archimedean prime segment.

Conversely, suppose that the conditions (1) and (2) hold and let P € Spec(R).
Then P is Goldie prime by (1). Firstly, assume that P is lower limit, i.e., P = n{ P,1|
P, € G-Spec(R) with P, > P}. Then C(P) = U C(P,) by Lemma 3.1.2. So, for any ce
C(P), we have ce C(P,) for some A. Then ¢cR > P, , because ¢R and P, are both left
¢R ¢ ™" and right R-ideals. Hence ¢ E:E;ﬁ 0in R= R/P, showing that R is bounded.
Secondly, suppose that the prime segment P, > P is Archimedean and let ce C(P).
Then, as before, ¢ P, is an essential right ideal of R=R/P and so ¢ P, C(P) = &. Let

de ¢ P, C(P). Then, by Lemma 3.1.4 (2) and Theorem 1.3.3, cR 2 cP, 2 dR,=R,d

and d R, > P follows. Therefore, R = R/P is bounded and hence R is fully bounded.

As an application of Theorem 3.1.5, we have the following:

Proposition 3.1.6. Let R be a Dubrovin valuation ring f a simple Artinian ring Q.
Then R is locally invariant f and only f it isfully bounded.

Progf. Suppose that R is locally invariant. In order to prove that it is fully bounded, on

the contrary, assume that R is not fqlly bounded. Then there are prime ideals P, P,
such that either the prime segment P, > P is simple or P, e G-Spec(R), P is a
non-Goldie prime ideal and there are no ideals properly between P, and P. In either
caseA, we shall prove that there is a regular element ce P,\ P. Let ¢, be any element in
P\P.If ¢ R is an essential right ideal, then ¢ = ¢, is regular. If ¢, R is not an essential
right ideal, then there is a right ideal J such that ¢cR @ I is essential. So it follows from

Goldie’s theorem that (cR @ I) P, is also an essential right ideal which is contained in
P, but not in P. So there is a regular element ce (¢;,R®D P butnotin P by [MR,

(3.3.7)]. Now let ce P\ P such that ¢ is regular. Then ¢ P,= P, ¢, because P,= P(c).
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Since P, o ¢P= P,c > P, we have ¢ P,=P,, which impliesc™ € O,(P,)= R, . Hence
R, =cR, c P, acontradiction. Therefore, R is fully bounded.

Suppose that R is fully bounded. Let ¢e J(R) such that ¢ is regular. By the
assumption and Theorem 3.1.5, P(c) = N{ le P, € Spec(R) such that P, 5 ¢}, which

is Goldie prime by Proposition 1.2.13. Suppose that P(c¢) is upper limit, ie., P(c) =
U{P#’ P, e G-Spec(R} such that P, c P(c)}. Then there is aP, withP, > c. This
contradicts the choice of P(c). Hence P(c) o P = U{ Pﬂl P(c) o P,} is a prime

segment which must be Archimedean by Theorem 3.1.5. Since ce P(c)\ P and ¢ is

regular, we have cP(c) = P(c) ¢ by Lemma 3.1.4. Hence R is locally invariant.

We say that R is invariant if cR ¢™ = R for any regular element ¢ in R and that

it is of rank n if there are exactly » Goldie prime ideals. From Lemma 3.1.4, we have

Proposition 3.1.7. Suppose that R is Archimedean and is f rank one. Then it is

invariant.

Progf. Let ¢ be any regular element and let ¢, be any regular element in J(R). Then we

have cRc¢™'= c¢, R(cc,)™ = R by Lemma 3.1.4, because ¢, , cc, € J(R).

3.2. Examples

We will give several examples of fully bounded Dubrovin valuation rings.

Example 3.2.1. Any Dubrovin valuation ring of a simple Artinian ring with finite

dimension over its center is fully bounded.
Example 3.2.2. Any invariant valuation ring of a division ring is fully bounded (see

[XKM, (Remarks to Examples 2.1 and 2.4)] for invariant valuation rings of division

rings with infinite dimensions over its centers).
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In order to give more general examples, we recall the skew polynomial ring
QOlx,c] over Q in an indeterminate x, where ¢ € Aut(Q). Since Q[x,c] is a principal
ideal ring, the maximal ideal P = xQlx,c] is localizable, ie., T = Qlx.cl,= {f(x)
c(x)™ | f&) € Qlx,o] and c(x) € C(P)}, the localization of Qfx,c] at P, is a Noetherian
Dubrovin valuation ring with J(7) = xT. Since Q is a simple Artinian ring, C(P) = {c(x)
€ Q[x,c]| cx) = ¢y+ex+...+c,x" such that ¢jis a unit in Q}. For any ¢ = f(x)
c(x)" e T, wheref(x) = f,+fx+...+f,x' and ¢c(x) = ¢, +¢x+...+¢c,x", the map o:
T — Q defined by ¢ (f) = f, ¢, is a ring epimorphism. Now let R be a Dubrovin
valuation ring of Q. Then, by [XKM, (1.6)], IE = (p‘l (R), the complete inverse image
of R by ¢, is a Dubrovin valuation ring of Q(x,c) (Q(x,0) sfands for the quotient ring of
QOlx,c]). Furthermore, let P = g é( £ € Spec(R)). Then P e Spec(I.{-) and fé/P =

R/ g by [XKM, (1.6)] and its proof. Thus it follows from [XKM, (1.6)] that IE is
fully bounded iff R is fully bounded. Hence we have

Example 3.2.3. With notation above, suppose that R is a fully bounded Dubrovin
valuation ring of Q and that ¢ is of infinite order ([XKM, (Examples 2.1 — 2.6, 2.7 and
2.8)]). Then ﬁ is a fully bounded Dubrovin valuation ring of O(x,c) and Q(x,c) is of

infinite dimensional over the center.

Finally, we give a few remarks on non—ﬁﬂly bounded total valuation rings: An
example of a total valuation ring with a simple segment was first constructed by [Mt].
See [BT] for other examples of total valuation rings with simple segments. Dubrovin

constructed an example of a total valuation ring with an exceptional prime segment

([Ds]).
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CHAPTER 4

Non-commutative v-Bezout rings

Throughout this chapter, ¥ will be a total valuation ring of a division ring K,

i.e., for any nonzero k € K, either k € V or k' e V. Let Q be the semigroup of
nonnegative rational numbers and ¢ be a semigroup homomorphism from Q , to
Aut(}), the group of automorphism of V, ie., c (r + 5) = ‘G(r).G(S) for any »,s € Q,.
Furthermore, R = V[x".c|r € Q,] is a skew semigroup ring of Q, over V, ie., itis a
ring with left V-basis {x” |r € Q,}. Each element of R is uniquely a finite sum
ax™ +...+a,x™with g, e V. The multiplication is defined by x"a = o(r)(a) x" for any a
€ Vand r € Q. Since ¢ is naturally extended to a semigroup homomorphism from
Q, to Aut(X), we have T'= K[ x” Glre Q,]is a skew semigroup ring of Q ,over K.
In Section 1, we prove that R = V[x",c lr e Q, 1] is v-Bezout, which is defined

in [Ma] and is a non-commutative version of commutative GCD-domains.
In Section 2, we give some examples of non-commutative y-Bezout rings with

some types of automorphisms.

4.1. Non- commutative v-Bezout rings

Let S be an Ore domain with its quotient ring Q and let /(J) be a right (left) S-
ideal. We use the following notation [MMU]: (S: ), = {q € Q| glc S (S, ={qge
Q|Jq c S} I,=(S: (St D)), and J=(S:(S:)), ),- It is clear that 7 (, J) is a right
(left) S-ideal containing I(J), respectively. If 7 = 7 (J =  J), then it is called a right
(Ig'Y) v-ideal. An Ore domain S is called right v-Bezout if I is a principal for any

finitely generated right ideal J of S. Similarly, we can define lgft v-Bezout and § is said
to be v-Bezout if it is right v-Bezout as well as left v-Bezout.

A partially ordered set A with ordering > is called an ascending net if for any
Ai» A, in A, thereis a A € Awith A ,< A (G =1, 2). Then we have the following

lemma.
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Lemma 4.1.1. Let A be an ascending net and let R, be an Ore domain with its
quotient division ring K ,, for each A € A. Suppose thatR, cR, ifp <A.SetR=
U{R, |2 e A} cde=u{K,1 |2 e A}. Then
(1) K is a quotient ring R which is a division ring.
(2) IfR, is a Bezout ringfor all . € A, then so is R.
(3) LetP, be a completely z)rime ideal of R,, which is localizable for any A € A.
Suppose that PR, = P, if A2 . Then
(@ P=U{P, |Ae A} isacompletely prime ideal of R and is localizable.

) R,=U{R, Ire A}

(©) IfR,, is atotal valuation ringfor all L € A, thensois R,.

Let N be the set of natural numbers. Then it is considered an ascending net in

1
the following obvious way: n > m iff m|n for any m, n € N. Let R = Vix", 6] =

k 1
{agx"+ ... +ax"+t q, | a,eV }. Then R, is considered as a skew polynomial ring

1 1 1

over V in the indeterminate x” with x" g = o(=Xa)x" for any a €V. Let P,= J(V)
, n '

1 .
[x", cl, a completely prime ideal of R, and it is localizable such that R, is a total

1

valuation ring of K(x", ) (see [BT]). Obviously, R,oR,and P, =P NR, ifn2

m. Furthermore, P = J(M)[x", o|lre Q1= U{Pnl neN} LetR= V[X', clre Q,l,

1
T=K[x",clre Q,land let T, = Klx", o], bea principal ideal ring for each n € N.

Then it is obvious that R =U,_.; R,and T=U,_o T,. So from Lemma 4.1.1, we

nel

have the following:
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Proposition 4.1.2. (1) P = J[x", o |r € Q,1 is localizable andR, is a total
valuation ring with R, =U R, .

(2) T=Klx", clr e Q,1 is a Bezout ring with its quotient ring K(x", o | r € Q,)

Let & be a left t-derivation of V, where 1 € Aut(}) and assume that (t, §) is
conmpatible, i.e., 3(J(1)) < J(V). Let § = Vlx; 1, 5] be an Ore extension over J in an

indeterminate x. Then P = J(})[x; 1, 8] is localizable and S, the localization of S at P,

is a total valuation ring (cf. [BT]). Now letf(x), g(x) € S and let ] = Sf(x) + Sg(x). Then
S,1= S, a, for some g € V and Klx; 1, 8] I = Klx; 1, 8] b(x), for some b(x) eKlx; 1, 3]

There are b € K and b,(x) € S \P with b(x)a™' = bb,(x). With these notations, we

have the following:

Lemma 4.1.3. [Ma, (2.1) and (2.3)]. ;1= S,I " Klx; T, 8] I = Sc(x), where ¢(x) =

b(x)aeS.

By using Lemma 4.1.3, we have the following theorem which is inspired by [C,

(3.5)].

Theorem 4.1.4. Let V be a total valuation ring o a division ring K. Then R=V[x", ¢

| » € Q,1 is v-Bezout, and it is not Bezout FV+K

Progf. Let I = Rfix) + Rg(x), for somef(x), g(x) € R. There is a natural number m such
thatf(x), gx) € R, . Set I,= R f(x)* R g(x). Then by Lemma 4.1.3, there is c(x) e

R,with R I NT, I, =R, ck), where R, I =R, alae V), T,1,=T,bkx

(bx) € T,), b(x)a™'= bb,(x) (be K, b,(x) e R\ P,) and c(x) = b,(x) a. For any

natural number » with m | n, we have R, _I=R aandT,1 =T, bx)andso [ =

R, I.N"T,I,=R, c(x) by Lemma 4.1.3. Sincef(x), g(x) € R, c(x) < Re(x), it follows
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1
-~ n
Ci7?

o), the quotient ring of T, for some » and we assume that m | n. Tt follows that [ ,C

1
RN K(x",0)= R aandso R c¢(x)= I < R, o.. Thus Re(x) € Raand hence ] =

Re(x) follows. If J = J,+ J,, where J, and J, are left ideals of R, then it is easy to
check that J= ( J, +J,)=,(J, + ,J,) and so R is left v-Bezout by induction on
generators. Similarly, R is right y-Bezout.

Now, suppose that R = V[x", & |7 e Q,] is left Bezout. Let o be a non-unit
element in J7\{0}. Then there exists A(x) € R such that Rar+ Rx = Rh(x). We have o =
a(x) h(x) and x = b(x) h(x) for some a(x), b(x) € R. Then it follows that A(x) is constant,
say, h(x) = ¢ and b(x) = b, x for some b, € V. Thus 1 = p, 6(1)(c) and so ¢ is unit in V.

Then Ra+ Rx = Rh(x) = Rc = R implies that ¢ is unit in 7, a contradiction. Hence R is

not left Bezout.

4.2. Examples

Finally, we will give several examples of skew semigroup ring of Q, over

total valuation rings.

Example 4.2.1 (trivial case, 6 = 1). R = V[x" lr e Q,1 is v-Bezout, where V'is any

total valuation ring.

In order to provide non-trivial examples, let X = F({ Y, } ¢ € Q) be the rational
function field over a field F in indeterminates {Y,l t € Q}, where Q is the field of
rationals. For any r € Q , let ¢, € Aut(X) determined by; 0,(a) = aforany g € F and
c,(Y,)=7Y,, for any t € Q. Furthermore, let v be the valuation of K determined by

va) =0 forallg e Fand W(Y,) =1 for all t € Q. Then V={keK|wk =0}is a

discrete rank one valuation ring of K. It is easy to see that ¢ (}) = V for ~any reQ,
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and ¢,,, = 0,.0,. Hence the mapping ¢ : Q, — Aut(}) defined by o () = o, for

any r € Q, is a semigroup homomorphism.

Example 4.2.2. With the notation and assumption the above, R = Vx" | r € Q,] s v-

Bezout which is not Bezout.

In order to get another example which is not discrete rank one valuation ring,

let G=@®Z, (r € Q,Z,=1Z), the direct sum of the copies Z, which is a totally ordered
abelian group by lexicographic ordering and let K and ¢, be as in Example 4.2.2. We
define a valuation of K as follows: v(g) =0 forallg € Fand W(Y,) =(...,0,1,0,...)

G, the ¢-th component is 1 and the other components are all zero. Then V' = {k € K |
v(k) = 0} is a valuation ring of K with infinite rank and J(¥) = J(J/)*. It is not hard to

see that ¢, (V) = Vfor allr € Q. Hence, we have

Example 4.2.3. R = V[x’ ] r € Q,11is v-Bezout, where Jis commutative valuation ring

with infinite rank and J(V) = J(1)*.

In order to give an example of non-commutative valuation rings, let be J be
any total valuation ring of a division ring K,and G =(g, | 7 € Q) be a group which is
isomorphic to Q,i.e., g, .g = g, foranyr s € Q. Since G is abelian, the group ring
V,[G] and K,[G] have the same quotient ring K,(G) which is a division ring. As
before, for any » € Q,we define an automorphismo, of K, (G) as follows: ¢,(a) = a
foralla € K, and 0,(g,) = g,,, forany ¢ € Q. Now J(¥)IG] is localizable and V"=
V,[G] TG is a total valuation ring of K, (G) (see [BMO, (2.6)]). Since o, (J(N[G]) =
JWMIGI, o, is considered as an automorphism of V' with ¢,,, = ¢,.0, forany r, s €
Q,- So the mapping ¢ : Q, - Aut(¥) given by ¢ () = o, for any r € Q is a

semigroup homomorphism.
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Example 4.2.4. With the notation and assumption the above, R = Vx| r € Q,lis v-

Bezout but not Bezout.
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CHAPTER S

Overrings of Non-commutative Prifer rings

satisfying a polynomial identity

In [AD], they defined the concept of non-commutative Priifer rings in the
context of prime Goldie rings and studied the structure of Priifer rings. In the case
when prime rings satisfying a polynomial identity (PT), Morandi studied PI Priifer rings
under some conditions such as; integral over its center or the center is commutative
Priifer. Furthermore, Dubrovin [D,] proved that any prime ideal of a PI Priifer ring is
localizable.

In Section 1, we describe the properties of overrings of PI Priifer rings.

In Section 2, we describe prime ideals of any overring of a PI Priifer ring by
using some results in [D,] and [Mo].

We refer the readers to [MMU] for elementary properties of Priifer rings and

Dubrovin valuation rings.

5.1. Overrings of PI Priifer rings
Throughout this chapter, R will be a prime Goldie ring with its quotient ring Q.
Let ] be an additive subgroup of Q. Then the right and left orders of I are defined to be

O0.(= { qu] IgcI }, and O = { qu[ gl cI }. We also define [~ =
{ge QI IgI <1}, the inverse of I. If I is a right R-submodule of Q, then [ is a
(fractional) right R-ideal if I contains a regular element of Q, and if there is a regular
element d € Q with dI ¢ R. Left R-ideals are defined similarly.

Following [AD], R is called right Prifer if for every finitely generated right R-
ideal7, I'J=R, II = O,(I). A left Priifer ring is defined similarly. It is proved in
[AD, (1.12)] that R is right Priifer if and only if it is left Priifer. A ring is called right
(lgt) Bezout is any finitely generated right (left) ideal is principal. We say that R is a
Dubrovin valuation ring if R is Bezout and R/J(R) is a simple Artinian ring, where J(R)
is the Jacobson radical of R. A prime ideal P of R is said to be localizable if C(P) = {c

eRlcis regular mod P} is aniOre set of R. Let P be a non-zero prime ideal of a PI
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Priifer ring R. Then any element of C(P) is regular, C(P) is localizable and R, is a

Dubrovin valuation ring ([D-,]). We write Spec(R) for the set of all prime ideals of R.

Lemma 5.1.1. Let S be an overring ¢ R. Suppose that S isfl at as a lg't R-module. Then
S ®, S =S8 naturally.

Prog. Forany o =Xs, ® t,, where s,, t, € S, we define q(a) = 2.s, t, . Then there is
a regular element ce R with 5,= ¢ s_ifor some ; € R. From the exact sequence 0 —
S — Q, we derive the exact sequence 0 > S®, S > Q0 ®, S. Thena=2%s, ® ¢, =
Scls ®14=c'®T s, te Q®, S Soifplo) =0,then0=3s,¢=c" (X5 )

and thus o = 0, which shows that ¢ is one-to-one. It is clear that ¢ is onto and hence ¢

is an isomorphism.

Let / be a right ideal of R and s €. Then we use the following notation; s~ I

= {7 eR | sr € I} which is a right ideal of R.

Lemma 5.1.2. Under the same notation and assumption as in Lemma 5.1.1, let I be a
non-zero right ideal f R and let s € S, non-zero. Then (s7'I)S=s5"US) ={teS|st e
1S}.

Prodf. Ttis clear that (s7'1)S < s~ (I S). To prove the converse inclusion, we consider
the exact sequence 0 — s —> R— S/I, where s, (r) = [sr + I] for all » eR. Then
since S is a flat left R—modulé, we have the following exact sequence:

0 (s7'1)®, S »R®, § —5 5 SI®,S.
From the exact sequence we derive the following exact sequence:

0> (s71)S > 8§ —> JIS,
because (§) ®, S = (S ®, HII ®, S) = S/(IS) by Lemma 5.1.1, which shows that

(s'1)S2 s S). Hence (s7'1)S = s~ (I S) follows.
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A family 7 of right ideals of R is called a right Gabriel topology on R if ¥
satisfies the following two conditions:
()if/ € Fand r € R, then 7' [ € 7, and
(i) if 7 €7 and .J is a right ideal of R such that ¢™'J e Fforalla € I , thenJ € 7.
If 7 is a right Gabriel topology on R, then we write R, for the right quotient of
R with respect to 7. Since R is a prime Goldie ring, R; = U{(R:]), | 7 € 7}, where (R:]);

= {qgeQ | gl = R}. We refer the readers to [S] for elementary properties of Gabriel
topology.

Proposition 5.1.3. Let S be an overring f R. Suppose that S isflat as a left R-module.
Then 7(S) = {I: right ideal of R |IS=S}isa right Gabriel topology on R and S = Rz s.

Prog. LetJ € #(S) and r € R (r # 0). Then R/(r™' D) = (/R + D/I implies (r DS = S,
i.e., r'I € 7(S), because IS = S. Next, let ] € F(S) and let J be a right ideal of R such
that (a7 )S=Sforallge . ThenSoJS2 Y. ala’ NS =)  aS=S. ThusJS
=S, ie.,J € F(S). Hence F(S) is a right Gabriel topology on R.

To show that § = Ry, let 7 € F(S). Then § = RS  (R:I); IS  (R:» which
implies R,, < S. To show the converse inclusion, let s € S. Then §= 57'S=(s"'R)S

by Lemma 5.1.2 and so s R € #(S) and s € (R: s™'R); C R,y Hence S= Ry (4.

Corollary 5.1.4. Under the same notation and assumptions as in Proposition 5.1.3, let

I’ be a right ideal of S, Then I’ = (' R)S.

Since any overring of a Priifer ring R is flat as a right R-module as well as a left

R-module, we have

Corollary 5.1.5. Let S be an overring ¢ a Prifer ring R. Then there is a right (Y
Gabriel topology 7 (F’) on R such that S = R; = Ry . ’

38



5.2. Prime ideals of overrings of a PI Priifer ring.

In this section, we assume that R is a PI Priifer ring. Note that R, is a Dubrovin

valuation ring for any P € Spec(R) and that any overring of a Priifer ring is Priifer (see

[MMU, (2.6)]).

Lemma 5.2.1. Let P € Spec(R) and P,' € Spec(R,). Then P,= P,'n R & Spec(R)
and RP1=(RP)P1‘ .

Progf. Since J(R,) . ) "R,=P', wehave P, =J((R,), ) " RandsoP, € Spec(R)
by [Mo, (1.8)]. Since J(R,) oP,', wehave P=J(R,) "R 2P, and so C(P) o C(P,)
by [MMU, (17.1)]. To prove that C(P,) < CRP (P")={aeR, | o is regular mod
P '}, let ce C(P,)and ¢ € P, for some B € R, . Then there is a d € C(P) and Bd €
R, ie., c¢Bd € P, and so Bd € P,. Thus B € P, and hence C(P,) < C, (P '). This
implies that R, c (R,) B To prove the converse inclusion, we claim that ¢ce C(P,)
for any ¢« € Cp, (P,'") and ¢ € C(P) with cxce R. Assume that ¢cr € P, for some r €
R.Then cr e P,' and so r € P,'n R = P,, because C(P) ¢ C(P) cC,, (P,"). Hence
Oce -C(Pl'). Now, let xe (R, ) .. ThenxP € R, for some $ e Cy (P ") and soxfBc €
R for some ceC(P) with B¢ € R. Since Bc € C(FP,), we have x € R, . Hence R, =

(R, ). follows.

Lemma 5.2.2. Let S be an overring R and let P’ € Spec(S). Then P =P’ "R €
Spec(R) and R, = S,..

Progf. Since P =P’ " R=J(S,.) " SN R =JS,) N R, it follows from [Mo, (1.8)]

that P € Spec(R). Let ¢ € C(P) and assume that ¢s € P’ with s € S. Then there is an /
e F(S) with xJ < R and so ¢x] ¢ P. Thus x/ — P and so x € P’, which implies C(P) <

Cs (P’). Hence R, < S, .. Since R, is a Dubrovin valuation ring, there is a P," €
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Spec(R, ) with S,.= (R, )P1| by Theorem 1.2.6. We put P, = J((R, )Pl' ) N R.Then P,

=J(Sp ) "R =P.Hence R,= R, =(R,) . =S, by Lemma 5.2.1.

Theorem 5.2.3. Let R be a PI Prifer ring and let S be an overring f R. Then Spec(S)
={pslpPe Spec(R) with PS < Stand S = "R, , where P runs over all Pe Spec(R)

with PS c S.

Prod. Let P e Spec(R) with PS — S and let I’ be a maximal right ideal of S with I’ o
PS. Then M’ =ann (1) ={s e S | (5/7°)s = 0} is a maximal ideal of S and so P, = M’

N R € Spec(R) with Ry =8, by Lemma 5.2.2. Because of S/M’ =S,,./(M’S,, ) =
Q(S/M), the quotient ring of S/M’, we have PS,,.c I,,.  S,,.. Soif P, D P, then R,
=PR, =PS§, ©Sy-2a contradiction. Thus Py o P and so R, D R, 2 S by [MMU,
(17.1)]. Hence S ¢ N R, , where P runs over all Pe Spec(R) with PS < S. Furthermore,
for any Pe Spec(R) with PS < S, let P’ = J(R,) N S. Then P’ € Spec(S) by [Mo,
(1.8)]. Since P = J(R,) " R =P’ N S, it follows from Corollary 5.1.4 that P’ = PS.

Hence PS e Spec(S). Conversely, let P’ € Spec(S) with S > P’. Then P=P "R €
Spec(R), P’ = PS and R, = §,. by Corollary 5.1.4 and Lemma 5.2.2. Hence § =

N R, by [MMU, (14.6)], where P runs over all Pe Spec(R) with PS c S and Spec(S) =
{Pe Spec(R) |PSc s}

Corollary 5.2.4. Let R be a PI Prifer ring and let P, Spec(R) (i = 1, 2). Then P, +

P=RorPo>P,orPbcCPh.

Progf. Suppose that R o P,+P,. Let M be a maximal ideal of R with M o P,+P,.
Then P, R,, € Spec( R, ) by Theorem 5.2.3 and so either P, R,, 2 P, R,, or
P, R, c P, R,, by Proposition 1.2.5. Since C(M) < C(P,) by [MMU, (17.1)], we have

P R, R= P.Henceeither P, o P, or P, C P,.
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