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Introduction

      During the last twenty years the theory of non-comnutative valuation rings has

been developed by many authors for different reasons. The main progress in the general

theory has been made after N. I. Dubrovin introduced his new type of valuation rings

which are called Dubrovin valuation rings. These rings are not only defmed for division

rings but also for sirnple Artmian rings especially for central sirnple algebras. As we

know, there are three types of non-commutative valuation rings, which are called total

valuation rings, invariant valuation rings and Dubrovin valuation rings.

      Let K be a division ring. A subring Vof K is called total valuation ring of K if

for any non-zero element a E K, either a E Vor a-i E V. A total valuation ring Vof a

division ring K is called an invariant valuation ring if aV = Va for all a E K. An order R

in a simple Artinian ring e is called a Dubrovin valuation ring of 2 if R is Bezout and

R!J(R) is simple Artmian, where J(R) is the Jacobson radical of R. We see that every

invariant valuation ring and every total valuation ring V is clearly a Dubrovin valuation

ring. However, the converse is not necessarily true.

      In this thesis, we study about non-commutative valuation rings in particular

about Dubrovin valuation rings and their global theories, say PrUfer imgs. Moreover,

we give some examples of v-Bezout rings which are the generalization of commutative

GCD-domains. /
      In Chapter 1, we give some elementary properties of non-commutative valuation

imgs, which are used in the next Chapters. We refer to [MMU] for details conceming

with orders, Dubrovin valuation rings, PrUfer orders and primary ideals.

      Let R be an order in a ring 2. A right R-submodule I of 2 is called a right R-

ideal of e if (i) I A U(2) # SZ5, where U(2) is the unit group of 2 and (li) there exists c

E U(e) such that cl s R. A left R-ideal of 2 is defmed similarly. A right and left R-

ideal is called an R-ideal. For a right R-ideal I of Q, we set 0,(I)= {gE 2l Ig {;;I},
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the right order ofI and O, (I)= { q E 2] gl gl }, the left order of L An element c in e

is called a right stabilizing element of R if cR is an R-ideal and we denote by r-st(R) =

{ c E e 1 cR is right stabilizing}. We say that c is stabilizing if cR = Rc and denote by

st(R) = {cE2 1c is stabilizing}. For any ideal I of a ring R, we denote by V-]Z-=

A{Pl P E Spec(R) withP2I} theprime radical oflwhich is a semi-prime ideal. An

idealA ofR is called ri ht .vf7-primary if aRb gA, where a, bER, implies either aE A

or bE V-i7 . Similarly, left ptmary ideals are deiined. In [BMU], they have described all

right primary ideals of R.

      In Chapter 2, we investigate the structure of all R-ideals by usage of stabilizing

elements and prirnary ideals by using some results from [BMU]. IfI is an R-ideal and I

is not fmitely generated as a right R-ideal such that 0, (I) = S = O, (I) and suppose that

.I(S) is Archimedean, it is proved that I :cA for some cE st(S) and A, a right and left

J(S)-primary ideal (see Theorem 2.2.3). In the case 2 is fmite dimensional over its

center, we obtain: (1) If I is finitely generated as a right R-ideal, then I = cR = Rc for

some cG st(R), (2) IfI is not finitely generated as a right R-ideal such that J(S) is

Archimedean, thenI= cA = Ac for some cE st(S) and A, a right and left J(S)-pmbary

ideal, (3) Ifl is not fmitely generated as a right R-ideal such that .1(S) is limit prime, then

I is one of the following three; I= cS = Sc for some cE st(,S), l = cJ(R) = 1(R)c for

some cE st(R) andI= nc2Rz for some cz E st(R2), where RA= Rp, and P2 runs over

                                            '
all Archimedean prime ideals with P2c J(S) (see Proposition 2.2.4). Furthermore, a

counter example is given to show that Proposition 2.2.2 (2)(a) is not necessarily held if

e is infmi/ te dimensional over its center.

      A ring is called right aeft? bounded if any essential right (left) ideal contains a

non-zero (two-sided) ideal. A img isjust called bounded if it is both right bounded and

left bounded. Let Sbe aring. We say that Sisfully bounded if S/P is bounded for any

prime ideal P of S. Let R be a Dubrovin valuation ring in a simple Artinian ring 2 and

let P E G-Spec(R), the set of all Goldie prime ideals ofR, with P # J(R) and set P, =
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A{ Pi1 Pa E G-Spec(R) with P, D P}. Then, in [BMO,(6)], they have shown that the

following four cases only occur: '
(1) P is lower 1imit, i.e.,P= P, . Otherwise, P, )P is aptme segment.

(2) P, D P is Archimedean.

(3) P, DP is simple.

(4)     P, D P is exceptional, i.e., there exists a non-Goldie prime ideal C such that P, D

                                                                     '                                   '    C)P.

      In Chapter 3, we investigate those results under an additional condition that R is

fully bounded. It is shown that for a Dubrovin valuation ring R of a simple Artmian img

2, R is fully bounded iff (1) and (2) only hold.

      Moreover, for any regular element c in J(R), we defme P(c) = A{ P2[ Pz e G-

Spec(R) with c E P, }, a Goldie prime ideal. R is called locally invariant if cP(c) =

P(c)e for any regular element c in J(R). Let R be a Dubrovin valuation ring of a simple

Artinian img 2. It is shown that R is fully bounded if and only if it is Iocally invariant.

      If 2 is of-fmite dimensional over its center, then R is always fully bounded. In

the end of this chapter, we give several examples of fully bounded Dubrovin vaiuation

rings of 2 with inf/mite dimension over its center.

      In Chapter 4, we study non-commutative GCD-domains. An Ore domain S is

called right aeft? v-Bezout if I, is a principal for any fmitely generated right ideal I of S.

S is said to be v-Bezout if it is right v--Bezout as well as left v-Bezout. This img is a non-

commutative version of a commutative GCD-domain. In the commutative imgs, [Gi]

proved if R is a GCD domain, so is R[x]. Inspired by [Gi], we prove if Vis a total

valuation ring of a division ring K, then R = l7[x",6 1r E Q,] is v-Bezout where Q,

the set of non-negative rational numbers, 6: Q,---> Aut(l7) is defmed by 6 (r + s) =
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6(r).6(s) for any r, s E Qo,

xr  for any aE JZ andrE Qo•

and the multiplication in R is defined by x'a = 6(r)(a)

      In Chapter 5, we study prime ideals of any overring of a non-commutative PI

Pnifer ring. We defme I-i= {gE21 Igl gl}), the inverse ofL Following [AD],R is

called right Profer if for every finitely generated right R-ideal L I"iI = R, II-' =

O, (I)•Left Profer rings are defmed similarly. In [D2], he proved that any prime ideal of

a PI Prdfer ring is localizable. In the case when prime rings satisfytng a PI, [Mo] studied

PI PrUfer rings under some conditions. By using some results in [D2] and [Mo], we shall

prove if S is an overring of a prime Goldie ring R and suppose that R is PrUfer satisfying

a polynomial identity, then Spec(S) = {PS 1 P E Spec(R) with PS c S}and S = AR. ,

where P runs over all PE Spec(R) with PS a S.
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      CHAPTER 1

Some elementary properties

      In this chapter, we give some elementary properties of orders, non-commutative

Dubrovin valuation rings and PrUfer orders. We refer to [MMU] and [MR] for details

concerning with orders.

1.1. Some elementary properties oforders
                                                                 '      In this section, we give some defmitigns, notations and elementary properties of

orders. For a ring R, we denote by U(R) the set of all units ofR and by C. (O) the set of

all regular elements (that is, non-zero divisors) of R.

      Let C be a multiplicatively closed subset of a img R. We say that R satiisfies the

right Ore condition with respect to C or that C is called a right 0re set of R if, for any

aE R and cE C, there exist bE R and dE C such that ad = cb. If C g C. (O), then it is

called a regular right Ore set of R. Similarly, we can define a (regular) left Ore set of

R. If C is a (regular) right and Ieft Ore set of R, then it is simply called (regular) Ore set

ofR•

      Let C be a regular right Ore set of a ring R. An overring T of R is called the

right euotient ring of R with respect to C if

(i) cE U(T) for any cE C and

(li) for any g E T, there exist aE R and cE C such that g=ac-i .

We denote the ring T by R. . We note that ,for a multiplicative subset C of R with C g

C.(O), the right quotient ring R. ofR with respect to C exists if and only if C is a

regular right Ore set ofR ([MR, Chap. 2]).

      A subring R of a ring 2 is called a right order in 2 if 2 is the right quotient ring

ofR with respect to C. (O), and sometimes we denote the ring 2 by e(R). In particular,

R is aright order in 2 if and only if C.(O) is aright Ore set of R. Similarly, we can

defuie a left order in 2 and a ring which is both a right and left order in 2 is called a.n

order in 2•
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      Let R be a ring and let Mbe a right R-module. An R-submodule L ofMis called

essential if L A N # O for any non-zero R-submodule N of M. By Zorn's lemma, we

note that for any R-submodule L of M, there exists an R-submodule L ' of M such that L

fi L' = O and L eD L' is essential in M([MR, (2.2.2(v))]). If a right ideal I ofR is an

essential R-submodule ofR, then I is called an essential right ideaL A right R-module U

is said to be uoform if, for any non-zero R-submodule U, and U2 of U, Ui A U2 4 O,

that is, any non-zero R-submodule of Uis an essential R-submodule of U.

      A right R-module M is said to havefinite Goldie dimension if it contains no

infinite direct sum of non-zero R-submodules. For any subset X of R, we set rR (X) =

{ a E R l Xa = O} and call it the right annihilator of X. Sometirnes we denote r. (X) by

roo. The left annihilator of Xis defmed similarly. A ring R is called a right Goldie ring

if R satisfies the ascending chain condition (acc) on right annihilators and has fmite

Goldie dimension as a right R-module. A left Goldie ring is defmed similarly and R is

called a Goldie ring ifR is a right and Ieft Goldie ring. We have the following property

([MMU, (1.1)]).

Theorem 1.1.1. Let R be a ring. Then thefollowing is equivalent:

ld R is a (semi)-prime right Goldie ring.

(iO R has a right quotient ring 2 which is (semi)-simple Artinian, that is, R is a right

  order in a (semO-simp le Artinian 2.

      Let R be an order in a ring 2. A right R-submodule I of 2 is called a right R-

ideal of 2 ifIA U(2) #/ and there exists cE U(e) such that cl g R. A right R-ideal I

of e is said to be integral ifI g R. Similarly, we can defme a left R-ideal of 2. A right

and left R-ideal is called an R-ideal.

      Let R an order in a ring 2. For any subsetsX and ]Y of 9, we set (X :Y),=

{qEel gYgX, (X :Y), ={gE21 Yg gX } and X"'={gE2l XgX gX }. For a

                                                                     'right R-idealIof 2, we set 0,(I)= (I :I).' { qE 2I Ig gl } and we called it the right

                                                      'order of L The left order of i is defmed sirnilarly. A right and left R-ideal is called an R-

                                                         'ideal. Then we have the following lemma ([MMU, 1.2]).
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Lemma 1.1.2. Ir R is an order in a ring 2 andl is a right R-ideal of 2 then

(1) O,(I)andO, (I) are orders in 2,

(2) I is a left O, (I)-ideal andarightO,(I)-ideal, and

(3) (R :I), is a leftR-ideal andaright O, (I)-ideal.

1.2. Some elementary propenies ofDubrovin valuation rings

      in this section, we give some elementary characterizations of Dubrovin valuation

imgs and its ideal theory.

      Let D be a division ring, (G, +) be a totally ordered group and let U(D) be the

set of all units in D. A suijective mapping v: U(D) -> G is called a valuation on D if it is

satisfyjng ([Sc]):

      (1) For any a, b E D, v(ab) = v(a) + v(b)•

      (2) v(a + b) ) min { v(a), v(b) } if b # -a.

                                                                     'Ifv is a valuation on D, then V= {aEU(D) 1 v(a) 2O } u {O}. Then Vis an invariant

valuation ring. In this case G is called value group of V.

      A ring R is called right Bezout if any fmitely generated right ideal of R is

principal. The left Bezout is defined similarly. A ring R is called Bezout if it is right and

left Bezout.

      Let R be a subring of a ring S. R is called a right n-chain ring in S if for any n+1

elements ao, ai,..., a. in S, there is anisuch that a,E2k.,akR.A right n-chain ring

in itseif is called a right n--chain ring. A left n-•chain ring is defined similarly. An n-

chain ring is a right and left n-chain ring. Then we have the following propenies

([MMU, (5.8), (5.11) and (5.12)]).

Lemma 1.2.1. LetR be a semi-simple ring, that is, J(ll) = O. ThenR isArtinianf and

only f R is a right n-chain ringfor some n.
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Theorem 1.2.2. Let R be a subring of a simple Artinian ring 2. Then thefollowing

conditions are eguivalent.'

(1) R is a Dubroyin valuation ring of 9•

 (2) R is a local semi-hereditaiv order in 2• '

(3) R is a local Bezout order in 2.

(4) R is a local n-chain ring in efor some n with d(R? -> n, where R = R/J(R).

Corollary 12.3. Let R be a Dubrovin valuation ring of 2 and let P be aprime ideal of

R. ,lr R/P is aprime Goldie ring, then R/P is qlso a Dubrovin valuation ring of its

classical guotient ring.

Lemma 1.2.4. ([MMU, (6.3)]). LetR be aDblbrovin valuation ring of 2 and let T2g

 Ti be right R-submodules of 2 such that (1) T, is regular and (2) there exists a subring

S of O,(T,)= {gE2lgT2 gT2} such thatfor aay regular elements t, and t,ET,

there is a regular element t e T, with St, +St2 g St• Then eitherTi= T2 or tiJ(R) ? T2

for some regular element ti E Ti•

       By using Lemma 1.2.4, we have the following Proposition (IMMU, (6.4)])

Proposition 1.2.5. Let R be a Dubrovin valuation ring of 2 and let S be a Bezout

order in 2. Then the set of regular left S- and right R-submodules of e is linearly

ordered LIy inclusion. Inparticular, the set of all R-ideals of 2 is linearly ordered by

 inclusion.

       Let P be a prime ideal of a ring S If C(P) = {cE S1c: regular mod P} is a

        '
regular Ore set ofS then the quotient ring S.(.) of S with respect to C(P) is denoted by

 S. and is called the localization of S at P. Let R be a Dubrovin valuation ring of a

simple Artinian img e and let S be an overring of R. Then J(S) g J(R) and S is local

([MMU, (5.3)]). Combining Lemma 1.2.1 and Theorem 1.2.2, we have ([MMU, (6.6)])
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Theorem 1.2.6. Let R be a Dubrovin valuation ring of e and let S be an overring of R.

(1) R-'  = RfJ(S) is a Dubrovin valuation ring of S = S/J(S)• ,

(2) S is a Dubrovin valuation ring of 2 and J(S) is aprime ideal of R.

(3) C. (J(S)) is a regular Ore set of R andS= RJ(s) •

      The converse of Theorem 1.2.6 (1) also holds ([MMU, (6.16)]) as following.

                                                          '                                              t --Proposition 1.2.7. Let S be a Dubrovin valuation ring of 2 and let R be a Dubrovin

valuation ring of S= S!J(S)• Then the setR = {rES I [r+.I(S)] E R } is a Dubrovin

valuation ring of 2•

      Let R be a Dubrovin valuation ring of 2. Then O, ( J(R)) = O, ( J(R)) = R by

[MMU, (6.8)], which implies the following Lemmas ([MMU, (6.9) and (6.10)]).

Lemma 1.2.8. Let R be a Dubrovin valuation ring of e , A be an R-ideal of 2 and S

== O, (t4). Then thefollo;ving are eguivalent:

(1) A isprincipal as a right S-ideal•

(2) A-iA =s

(3)A )AJ(S).

Lemma 1.2.9. LetR be a Dubrovin valuation ring of 2 and letA be an R-ideal of e.

Then 0. (t4 ) = O, (A -' ) and O, (A) = O, (A -') .

          '
      Combining Lemma 1.2.4 and Lemma 1.2.9, we have

Propositien 1.2.le ([MMU, (6.13)]). Let R be a Dubrovin valuation ring of 2 and let

A be an R-ideal of 2. SetS =O, (A) and T= O, (A)•

(1) Av= (S: (S :A)i), =A"= 'A =(T: (T:A),)i andA*=A-i -'.
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(2) A"" =A' and (A -i )" = A-i .

(3) JrA is not aprincipalrightS-ideal, then A-iA = J(S) andJ(S) is not aprincipal

   right S- ideal.

(4) IfA cA* , thenA* " cS andA = cJ(S)for some regular element c EA*• In

   particular, A =A* J(S)•

      Let Ibe a right R-ideal and Iet S= O, (I). We define I" = A cS, where c runs

over all elements in e with cS R J Sirnilarly, for any left R-ideal L with T = O, (L), we

defme *L = A Tc, where c runs over all elements in 2 with Tc p L. The following

proposition is established by a standard method ([MMU, (6.I 1)]).

Proposition 1.2.11. Let R be a Dubrovin valuation ring of 2 and let I be a right R-

                          '

(1) IgI*.

(2) (I*)* = I*.

(3) (cD" = cl* for aigy c E U(e)•

(4) (cD -' =I'ic-ifor aay c E U(2)•

      Let R be a Dubrovin valuation ring of 2. Then by [MMU, (6.8)], O. (1(R)) =

O, (J(R)) = R. If J(R) is not principal as O. (J(R))-ideal, then J(R)* = R = J(R)-i by

[MMU, (6.12)].

      A prime ideal P of a ring R is called Goldie if RIP is a Goldie ring. By [MMU,

(6.8)], if R is a Dubrovin valuation ring of a simple Artmiaii ring 2 and S is an overring

ofR then J(S) is a Goldie prime ideal of R, which is localizable and R. is a Dubrovin

valuation ring with J( R. ) A R = P ([MMU, (14.5)]). We denote by $(R) the set of all

ovenings of a img R, Spec(R) the set of all prime ideals of R, and G-Spec(R) the set of

all Goldie prime ideals of R. By [MMU, (6.7) and (14.5)], we have the following

correspondence
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Proposition 1.2.12. Let R be a Dubrovin valuation ring of a simple Artinian ring 2.

Then there exists a one-to-one correspondence between $(R) and G-Spec(R).

      Let R be a Dubrovin valuation ring of a sirnple Artinian ring 2. Then the

intersection of Goldie prime ideals ofR is also a Goldie prime ideal ([BMO, (1)])

Proposition 1.2.13. Let R be a Dubrovin valuation ring of a simple Artinian ring 2

                                                                 'andlet P, E G-Spec(R). ThenP=A P, is also in G-Spec(R).

      Let R be be a Dubrovin valuation img of a division ring K. The following

Lemma ([MMU, (8.13)]) gives a criterion ofR to be a total valuation ring.

Lemma 1.2.14. Let R be be a Dubrovin valuation ring of a division ring K. Then R is

total jf and only f ii = Rll(R) is a division ring.

1.3. Some elementary properties ofPrUfer orders

      In this section, we give some properties of PrUfer orders. Let 2 be a semi-simple

Artinian ring and let R be an order in 2, that is, R is a semi-prime Goldie ring. R is

called a right aeft? Profer order in Q if any fmitely generated right (left) R-ideal is a

progenerator of Mod-R (R-Mod), that is, projective and a generator of Mod-R (R-

Mod). A Pr(]"er order is a right and left Pnifer order. By [MMU, (2.5)], a right PrUfer

order in asemi-simple Mmian img is left Prdfer order. •

      Let R be a Priifer order in a semi-simple Artinian img 2 and let S be an overring

of R, that is, R g S g e. It is clear that S is an order in 2. It is proved in ([MMU,

(2.6)]) that S is also PrUfer.

Proposition 1.3.1. An overring of a Pr(ifer order in a semi-simp le Artinian ring is also

a Profer order.

      Let A be an ideal of a Prttfer order R in a simple Artmian ring 2. Then any

element of C(A) = {cER 1 c is regular modulo A} is regular ([MMU, (22.6)]). In the
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caseA is maximal such that RIA is a semi-simple Artinian ring, then C(,4) is an Ore set

ofR and R. is a Dubrovin valuation ring of2 ([MMU, (22.7)]).

Proposition 1.3.2. LetA be an ideal of a Pofer order in, a simple Artinian ring 2.

Then C(A) consists of regular elements of R.

Theorem 1.3.3. Let R be a Profer order in a simple Artinian ring 2 and letA be an

ideal of R such that RIA is a semi-simp le Artinian ring.

(1) C(`4) is a regular Ore set of R.

(2) gr A is a maximal ideal of R, then R. is aDubrovin valuation ring of2.

Dubrovin has proved the following property of Prdfer order ([D2, (4)])

Proposition 1.3.4. Let R be a Profer order in a simple Artinian ring e and let S be a

Dubrovin valuation ring of e containing R. Then P = J(S) A R is aprime ideal of R

sueh that C(P) is a regular Ore set of R andS= R.•

The following Proposition is proved by [Mo, (3.1)]

Proposition 1.3.5. Suppose S is a Dubrovin valuation ring and EII is an order inS =

SILI(S). ThenR" {rES I r+J(S) E 611} is Proferfand only f Sl is Profer.
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                            CHAPTER 2

              On R-ideals of a Dubrovin valuation ring R

      Throughout this Chapter, we denote by R a Dubrovin valuation ring in a simple

Artinian ring 2. We use "c" or `5" for proper inclusion and "g" or "p" for inclusion.

For any subset X and Yof e, we set (X:Y),={gE2IgYgX} and (X:Y),=

{geel Yq gX }. For an R-ideal I, we set I. = (R :(R :I),), and ,I = (R :(R:I).)i•

Iis called av-ideal if I. =I= ,I•

      In Section 2.1, we give some structures of v-ideals related to the properties of

Jacobson radical.

      In Section 2.2, it is described the structures of all R- ideals by usage of

stabdizing elements and primary ideals.

      We refer to [MMU] and [BMU] for details conceming with Dubrovin valuation

imgs and primary ideals.

2.1. Strueture ofv-ideals

      For an R-ideal L we set 0,(I)= {qE21Iq gl }, the right order of I and

Oi (I)= { g E 2 l gl gl }, the left order of L Then we have the following

Lemma 2.1.1. Let S be aproper overring of R. Then

      (1) (R : S), = J(,S[)

      (2) (R:1(S)), =S

proofr (1) It is clear that (R :S), pJ(S). If (R :S), DJ(S), then (R :S), = (R :S),S=

S because (R : S)t is an ideal ofR and S= RJ(s), a contradiction.

(2) It is clear that (R:J(S)), R S. To show the converse inclusion, fifst assume that

J(S) = sS = Ss for some s E J(,S). Then we have (R : J(S)), = (R : S), s-i = J(ED sMi = S

by (1). Next, assume that J(S) is not fmitely generated as a one-sided S-ideal. Then we

                                    13



have J(S) = J(S)2 and O, (J(S)) = S by [MMU, (6.8)] and Lemma 1.2.8, and it follows

that (R :J(S)),g(S :J(S)),= O, (J(S)) = S. Hence (R :J(S)), = S.

      A prime ideal P of R is said to be Goldieprime if R/P is a Goldie img. By

Theorem 1.2.6 and Proposition 1.2.12, P is Goldie prime if and only ifR. exists and is a

Dubrovin valuation ring. We note that J(S) is always Goldie prime for any overring S of

R.

Lemma 2.1.2. Let I be an R-ideal and set S = O. (I) and T= O, (I) • Then

      (1) ff I isfinitely generated as a right R-ideal, then (R :J),I= R•

      (2) l7" I is notfinitely generated as a right R-ideal, then (R :I),I = J(S . In

         Particular, (R :I),I is Goldieprime.

Progf: (1) It is clear.

(2). IfI= aS for some a E I, then S# R by assumption, and so (R :I)," (R :aS),=

(R :S), a-i = J(S) a-i by Lemma 2.1.1(1). Hence we have (R :I),I= J(S) a-i aS = J(S).

IfI is not' fmitely generated as a' right S-module, then I = I J(S) by Lemma 1.2.8. It

follows by Lemma 2.1.1(2) that (R:I), = (R:IJ(S)), = ((R:J(S))i:I)i =

(S:I), =I-i (:" {xEel Ixl gl }). Thus By Proposition 1.2.10 (3), J(S) = I-iI =

(R :I),L

      An element c in e is called a right stabilizing element of R if cR is an R-ideal

and.we denote by r-st(R) = { c E e i cR is right stabilizing}. We say that c is stabilizing

is cR = Rc and denote by st(R) = { c E 2 ] c is stabilizing}.

      If S is a Noetherian Prdfer order in a simple Artmian ring, i.e., a Dedekind ring,

theR any ideal is always a v-ideal, because it is projective. However, in non-Noetherian

case, this is not necessarily to be held. In the case of Dubrovin valuations rings, this

depends on the properties of Jacobson radical, as it will be seen in the fo"owing

proposition which is used in section 2.2.
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Proposition 2.1.3. ,
                            '  (1) lr J(R) = xR = R)cfor somex e R, then a7!y R-ideal is a v-ideal

  (2) 3r J(R) -= J(R)2, then tcJ(R)/ce r-st(R)? is the set of all non v-ideals.

ProqC Let I be an R-ideal with I c I. . Then I c- cul(R) c- I, for some regular element

aE I. by Lemnia 1.2.4. So I. g (a.I(R)).= (axR).= axR g I..= I. • Thus I, = axR

g aR g I, , and we have J(R) = xR = R, a contradiction. Hence I = I, , and similarly we

havel= I.
       v
(2) By [MMU, (6.8), (6.12)] and Proposition 1.2.11, we have (cJ(R)),= c(J(R)).= cR

D cJ(R) for any cE r-st(R), and so cJ(R) is not a v-ideal. Conversely,' let I be an R-ideal

with I c I..Then, by Lemma 1.2.4, I g cJ(R) g I, for some regular element eE I,.

So J,= (eJ(R)),= cR. Thus cE r-st(R). Now we shall show that I= cJ(R). To prove

this assume, on the contrary, that I c cJ(R). Then there is a regular element dE cJ(R)

with I g di(R) g I, . Thus, again we have I. -- dR, which implies dE r-st(R). On thg

other hand, since dE cJ(R), we have dR c cJ(R), because dR is a v-ideal and cJ(R) is

notav-ideal. Thus I = dR ( cJ(R) c I , acontradiction. HenceI= cJ(R).
                 v -v

Remark. In the case 2 is fmite dimensional over its center, [Di] has obtained the

following ([MMU, (7.l2) and (7.5)]):

  (1) 0, (I) = O, (I) for any R-ideal L

  (2) If cR 2 Rc for some cE 2, then cR = Rc. In particular, r-st(R) = st(R) = l-st(R)

     {cE2 lcR is left stabilizing }. -
  (3) If cR = Rc, then cS = Sc for an overring SofR.

      However, if 2 is inf/mite dimensional over its center, then (1) - (3) are not

necessarily to be held. For example, let (K,M and (K, 7) be valued fields as in [XKM,

(2.5)], namely, lfD V, 6 E Aut (K) such that 6(V) = Vand 6(M c YV. Set S = M(i)=

              '
                                    '
                                                      '                                                                '
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 M+ xT and R = V(,)= V+ xT, where T= K[x,o]<.), the localization of K[x, 6] at

 maximal ideal (x) =, xK[x, 6]. S and R are both Dubrovin valuation rings, in fact, they

 are total valuation rings. First we note that xSx-` = 6 (S) = 6(M + 6(xT) g if+ xT =

 S. By [XKM, (1.5)], 6 (S) c S, so that xSxr' c S. HenceI= Sx is an ideal ofSwithI )

xS. Similarly, xR = Rx, because 6(V) = V. Furthermore, it is easily seen that S=

                '                                                    ' O, (D c• x-' Sx = O, (i) . Hence (1)--(3) are not necessarily true. In particular, xE l- st(S)

                       ' butxÅë st(S).

 2.2. R-ideals ofa Dubrovin valuation ringR

       For any ideal I of a Dubrovin valuation ring R of 2, we write Spec(R) for the set

                               ' of all prime ideals ofR and denote .v7-= A{Pl P E Spec(R) with P 2 I} theprime

 radical ofI which is a prime ideal ([MMU, (13.1)]). An idealA of R is called right

 V-Z--primary if aRb gA, where a, bER, implies either aE A or bEe. Similarly,

 left primary ideals are defined. In [BMU], they have described all right primary ideals of

R. So it is natural to ask the question: Describe the structure of all R-ideals by usage of

 stabilizing elements and primary ideals. In this section, we give a partial answer to this

 question in general case and a complete answer in the case 2 is finite dimensional over

                                                                     'its center after a few prelinimary lemmas.

Lemma 2.2.1. LetR be a Dubrovin valuation ring and letI be an R-ideal which is not

finitely generatedasarightS-ideal, where S= O.(D•Then (S:I)i = (R:I)i•

Proof: First note that J(S) =,J(S)2 and so I = I .r(S), by Lemma 1.2.8 and Proposition

 1.2.10(3). Hence we have (R:I), = (R :U(S)),= ((R:J(S))i :I)i = (0i(J(S):I)i =

 (s :D, by [MMU, (6.8)], because (R :J(S)), = O, (J(S)) •

Remark. In Lemma 2.2.1, we can not drop the condition that I is not fmitely generated

as a right S-module and J(S) =J(s)2 .
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   (l) IfS=R and I= aS (see the example in the Remark of Sec. 2.1), then (R :I), g

      R a'i g Sa-i = (S :I), •

                                            '      '                                                   '   (2) If J( S) DJ(S)2 , then J(S) = aS, and so (R :I), g R a-' g Sa-i = (S :I), ,

    . wherel=aS.

   A Goldie prime ideal P is Archimedean if there is a prime segment P DP, which is

Archimedean, that is, for any a G PXP,, there is an ideal IgP with a E I and ,P,=

AJ" (see [BMO] and IBMU] for details concerning prime segments). Then we have

the following.

Lemma 22.2.

   (1) Suppose that J(R) is Archimedean andJ(R) :RxR. Then J(R) isprincipal.
                                                                   '
   (2) LetIbe an R-ideal with S= O,(I) and T == O,(I). Suppose thatI = RqR and

     J(E}) isArchimedean. ThenI = aS == Tafor some a E I.

Progif] (1) Let J(R) D P, be the Archimedean prime segment. But gr = {A ]A is an ideal

ofR and A ) x}. Then gr is a non-empty inductive set, and so it contains a maximal

element B. Since there are no ideals between J(R) and B properly, B is prime if J(R)

=J(R)2. In this case, we have B = P, , which contradicts the Archimedeaness. So J(R)

DJ(R)2 and hence J(R) is principal. '

(2) To showI= aS for some a E I, it suffices to prove that IJ(S) c L Suppose that on

the contrary, I= ILI(S). Then q= ri gxi+ ... + r. qx. and Sx = Sxi+ ••• + Sx., Where

r, E R and x, x, E ..r(S), i= 1, ..., n. Now, we haveI=ISxS. If .J(S) = StS, then by (1),

.r(S) = sS = Ss and so I = Is. It follows that s-` E O. (I) = S, a contradiction. Hence .J(S)

) SxS and there is some t E J(S) with J(S)tD SxS by Lemma 1.2.4. Then I= IStS g

IJ(S)t g It and so t-i E0, (I) = S, a contradiction. Hence ID IJ(S). Thus I = aS for

some a E I and I " aSa-ia= O, (I)a= Ta follows.
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Theorem 2.2.3. Let R be a Dubrovin valuation ring in simp le Artinian ring 2. Let I be

an R-ideal such that O, (I)= S = 0, (I) andI is notfinitely generated as a right R-

ideaL Suppose that J(E}) isArchimedean. ThenI= cAfor some cE st(1sp andA a right

and left J(S)-primai v ideal•

ProqC Let J(S) D P be an Archimedean ptme segment. By Lemma 2.1.2 (2), we have

(.R :I),I = .I(S)• Let gn = {xE(R:I), ] tw= J(S)}. Then gn = SZ5, because J(,S) is

Archimedean. First we claim thatA = SbeSI (xE gr ) is right and left J(S)-priniary. Since

VI4-= J(S), it suffices to prove that O, (A) =S=•O, (A) by [BMU, (2.5)]. It is clear

                                   '             '
that O, (A)R S and O, (A)p S. If O, (A)) S, then O, (A)2 R, because there are no

                                                           'Goldie prime ideals betvveen J(S) and P, and so we haveA = BR. =R. , a contradiction.

                           'Similarly, O, (A) = S.

      Next we show that U{ ,SbeS lx E gr } = (R:I),• Since O,(I)=S= Oi(I),

                                     '
(R :I), is a right S-ideal. To show that (R :I), is a left S-ideal, frrst suppose that I= aS

                                                              'for some aE L Then, by Lemma 2.1.1, (R :I), = J(S) a-' so that it is a left S-ideaL

                               '
Suppose that I is not fmitely generated as a right S-ideal. Then, by Lemma 2.2.1,

(R :I), is a left S-ideal. Hence ,SbeS g(R :I), for any xE 7 . Suppose that y E (R :I),

but y e gn . Then we have Sy SI g P and so SyS g SxS for any x E gn . This is a

contradiction and hence U{ SxS Ix E gn }= (R :I), holds•

                                                       '                      '                             '                                '      Finally we claim that 0, (,SXS)= S for some x E gn . Suppose that O. (,SbeS)D S

                                                             'for allx E gr . Then O, (,SboS)2 R, and so (R :I), R. = (R :I)i•

      Case 1. I= aS for some aE L Then S" O, (I) = aS a-i and J(S) = a.J(S) a-i

foilows. By Lemma 2.1.1 (1), (R:I), =(R:aS), = (R:S),aMi = .J(,S) a"= a'iJ(S),

and so (R :I), = (R :I), R. = a-i J(S) R. = a'i R.. Hence we have J(S) = R. , a

      '
contradiction.
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      Case 2. I is not fmitely generated as a right S-ideal. Then, by Lemma 2.2.1,

                                                                   ' I 'i = (R :I), and so I -i R. = I 'i . It fo llows that R. g O, (I -i) = O, (I) = S by

                                        ' [MMU, (6.10)], a contradiction.

      Hence there is some xE Y such that O (SbeS)= S. The above discussion shows
                                     r
 that there exists xE gr such that A = ESbeSI is right and left ,J(S)-prirnary, where

 O, (iSbeS)= S = O, (iSbeS). By Lemma 2.2.2, there is some cE ,SboS such that StcS ; cS =

 ' Sc . Thus we have cE st(S) and I= c-iA (e-i E st(s)).

                   '
                               '
      A Goldie prkne ideal P is called a limit prime ideal ifP = U{P, 1P D PA :

 Goldie ptme}. Suppose that 2 is finite dirnensional over its center. Then any prime

ideal is Goldie prime and it is either Archimedean or limit ptme <see IBMO]). Also note

that an ideal is right primary if and only if it is Ieft primary, which is called a primary

ideal (see [MMU, (13.4)]). Now we have the following proposition which describes all

R-ideals in terms of pimary ideals and stabilizing elements in the case 2 is fMite

dimensional over its center.

Proposition 2.2.4. Let R be a Dubrovin valuation ring of a simp le Artinian ring 2 itvith

finite dimension over its center andI be an R-ideal with O. (I) == S ( = O, (J)? . Then

  (1) Suppose that I isfinitely generated as a right R-ideal. Then J = cR == Rcfor some

     cE st(R).

  (2) Suppose that I is notfinitely generated as a right R-•ideal.

   (a) lr J(S) isArchimedean, thenI= eA =Acfor some cE st(S) and some J(&-

        primary idealA.

   (b) IfJ(S) is limitprime, thenIis one of thefollowing three;I= cS =Scfor

        some eE st(S),I= cJ(R) = J(R)cfor some cE st(R) andI" nc,R,for some

         c2 E st(RP, where RA = Rp, and PA runs over allArchimedeanprime ideals

        with P, c J(,S).
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PToof (1) Because R is Bezout, we have l= cR for some cE st(R) and so I= Rc by

Rern-ark in Sec. 2.1.

(2)(a) This follows from Theorem 2.2.3 and [MMU, (7.1 1)].

   (b) First we shall prove that J(S) = U{P,:?trchimedeanI P, c .1(S)}. To prove this,

  let .r be any non-zero element in J(S) andA = S5cS. Suppose that O, (A) = T. ThenA

  =yT = Ty by [MMU, (7.10)]. ThusP=fi P, = fiA" is an Archimedean segment

  (see [BMO, (5)]) and x E P.

      Case 1. IcI.Then J(R) =J(R)2 and I= cJ(R) for some cE st(R) by
                 v
              '                                                     'Proposition 2. 1 .3.

      Case 2. I= i, . Suppose thatI# cS for any cE st(S). Then, by Lemma 1.2.8,I=

IJ(S) = I( U, P, ). If I = IP, for some X, then S = O, (I) 2 O, (Pi) = Rp, ,a

contradiction. So we have IRi =) J =) IPA. To show that 0,(IRz)= Rz, suppose

                                                   'that O,(IR,)= T )Rz. Then IR,= IT and so IT = ITP,=IR, P, 'IPa c I, a

contradiction. Hence O. (IRP = R, . So, by the similar method as in Lemma 1.2.8, we

have IR,= cAR,, for some c, EIR,, because IRz=R2Iby [MMU, (6.5) and (7.11)].

Hence IRi' c2R2= R,cz by [MMU, (7.5)]. Thus cA Est(R, ). To show that I=

fi IR,,let B= n IR,.Then (R :I),B( (R :I), IR,=J(S) R,= R, for any X by Lemma

2.12 (2). So (R :J), B g n R, = S by [BMO, (4)]. Thus B g (S : (R :l),). =

(S : (S :I),),= I,=Iby Lemma 2.2.1 and Proposition 1.2.10, and henceI= n c,R,for

some c2 G St( RA )•

                        '
Remark Proposition 2.2.4 (2)(a) is not necessarily held if 2 is inf/inite dimensional over

its center. To give a counter example, let S = M+ xT and R = V+ xT be the same as in

the example of Remark in Sec. 2.1 and setI= Sx. Then O, (I)=S andIis not fmitely

generated as a left R-ideal. Assume that I =Ac for some ce st(S) and some P-prirnary

idealA, where P = J(S). Then, by [XKM, (1.10)(3)], we may assume that for some cG

st(rv) = KX{O}. By Remark to [XKM, (1.7)],A = 2 + xT for some non-zero priinary

    .videal A = Q(A), where rp: T=K[x,a](.) -> Kis the natural map with rp ff(x)c(x)-i) =

                                  '
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   -1     (rtx) = fo +fix+•••+f.xnand c(x)=co +c,x+...+c.xMfo Co

follows that O = xS A K= cA A K= cA"'  , a contradiction.

with c,#O). So it
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                       CHAPTER 3

A characterization of fully bounded Dubrovin valuation rings

      A ring is called right aeft) bounded if any essential right (left) ideal contains a

non-zero (two-sided) ideal. A ring isjust called bounded if it is both right bounded and

left bounded. Let Sbe aring. We say that Sisfully bounded if S/P is bounded for any

prime ideal P of8 We write J(,S) for the Jacobson radical ofS and Spec(S) for the set

of all prime ideals of S.

      Let R be a Dubrovin valuation ring in a simple Artinian ring 2 (see [MMU,

Chap.II] for the definition and elementary properties of Dubrovin valuation rings). A

prime ideal P ofR is called Goldieprime if R/P is a prime Goldie ring. We denote by

G-Spec(R) the set of all Goldie prime ideals of R. Now letP,,P E G-Spec(R) with

Pi D P• The pair P, D P is called aprime segment if there are no Goldie primes properly

between Pi and P.

      Let P E G-Spec(R) with P # ,J(R) and setP,= A{P,I P, E G-Spec(R) with

Pz D P}. In [BMO, (6)], they have shown that the following four cases only occur:

(1) P is lower limit, i.e.,P=P, . Otherwise, P, DP is aprillle segment.

(2) P, DP is Archimedean.

(3) P, DP is simple.

(4) P, DP is exceptional, i.e., there exists a non-Goldie prime ideal C such that P, )

    CDP.
       In section 3.1, we prove that R is fu11y bounded iff (1) and (2) only hold (see

Theorem 3.1.5). (Note that RIJ(R) is bounded, because it is a simp}e Artinian ring). For

any regular element c in ,J(R), we define P(c) =A{ PA1 PA E G-Spec(R) with cE P2 }, a

Goldie prime ideal ([BMO, (1)]). R is called locally invariant if eP(c) = P(c)c for any

regular element c in J(R). This concept was defmed by Grater [G] in order to study the

approximation theorem in the case where R is a total valuation ring. We show that R is

fu11y bounded if and only if it is locally invariant, by using Theorem 3.1.5 (see

Proposition 3. 1 .6).
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      In section 3.2, we give several examples of of fully bounded Dubrovin

valuation rings of e with infinite dimension over its center. If e is of fmite

dimensional over its center, then R is always fu11y bounded.

3.1. Fully bounded Dubrovin valuation rings

       Throughout this section, R will denote a Dubrovin valuation ring in a simple

Artinian ring 2. For anyP E Spec(R), set C(P) = {cERlc is regular mod P}. IfP E

G-Spec(R), then C(P) is localizable and we denote byR. the localization of R at P.

Before starting the lemmas, we note the following: there is a one-to-one

correspondence bgtween G-Spec(R) and the set of all overrings ofR, which is given by

P -> R. with P = J( R.) and S -> 1(S) (P E G-Spec(R) and S is an ovening of R).

                                                    '
Furthermore, for anyP, , P E G-Spec(R), P, DP iffR.cR.,([MMU, (g 6)] and [BMO,

(g 2)]). We will use these properties throughout the chapter.

Lernma 3.1.1. Let S be an order in 2 andA be an S-ideal such that O,(A)" T"

O,(A)where O.(A)" {qEe1AggA} and O,(A) = {gE2IgA gA }. Suppose

that A " aTfor some a E A• Then A = Ta.

Pro of T = 0, (A ) = aTa"i imp lies A = Ta.

                                '    '                        'Lemma 3.1.2. Let R be a Dubrovin valuation ring of 2 and PE G-Spec(R). Suppose

that P is lower limit, i.e., P= A{P,I P,E G-Spec(R) withP, ) P}. ThenR.=

wR., and C(P) = uCp, •

1?roof: Since PADP, it follows that R. )R., so that R. 2S =uR., . Suppose that

R. D S. Then for any P, ,P, = J( R., ) p J(S) D ,J( R,) =P implies P =A P, p .J(S) D

P, acontradiction. HenceR. = uRp, and so C(P) = vC(Pz) follows.
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Lemma 3.1.3. Let R be a Dubrovin valuation ring of e andP E G-Spec(R). Then

 (1) Spec( R.)={P, IP, G Spec(R) with P 2 Pi }•

 (2) Let P,andP,be in Spec(R) withP2P, DP,• ThenPi DP, is aprime segment

     of R f and only f it is ap rime segment ofR. •

Proof (1) Let P, E Spec( R. ).

Case 1. If P, is Goldie prime, then (R. )., is an overring of R. (and so of R) with

1( (R. )., )= P, , i.e., P, e Spec(R) andP= J( R. )2P, .

Case 2. If Pi is non-Goldie prime, then we can construct an exceptional prime

segment ofR. , say P, DP, DP, by [BMO, (6)]. By case 1, P pP, and P, , P, E

G-Spec(R). It easily follows from note before Lemma 3.1.1 that there are no Goldie

primes properly between P, and P, , which implies P, DP, is a prime segment ofR. As

in [BMO], let K(P,)= {aE P,1 P,aP,cP, }. Then K( P,)= P, by [BMO, (7)] and

so P, D P, is an exceptional prime segment of R with K( P, ) = P, , i.e., P, is

non-Goldie prime of R with P DP, . Conversely, letP, e Spec(R) with P ;P, . Then

from note before Lemma 3.1.1 and the method we have just done, we can easily see

thatP, E Spec(R.)and that P, E G-Spec(R) iff P, E G-Spec(R.).

(2) This is clear from (1).

Lemma 3.1.4. Let R be a Dubrovin valuation ring of 2 and P, )P be an

Archimedeanprime segment. Thenfor aay cE P, XP, thefollowing hold:

 (1) Rp,cRp,"aRp,=Rp,a,forsomeaEPi•

 (2) ,if c is a regular element, then cRp, = Rp, c and cPi " Pi c•

Proof Firstiy note that P, D P is an Archimedean prime segment ofRp, by Lemma

3.1.3 and [BMO, (7)].

(1) Let RN .,= R.,/P, a Dubrovin valuation ring of R. = R.IP (see Theorem 1.2.6)

          -N -v -such that J(R.,)= P,= P, /P andP, )(O)is Archimedean. Here for anyaE R,,,we

                          '



                             -V -V At -V At -V Nwrite a"  for the image ofa in R.,. If P,=P, 2, then O# R., c"  Rp,= a-  Rp,=

R.,afor some ae P, by [BMU, (2.1)]. If P,DP, 2, then R.,is a Noetherian

Dubrovin valuation ring and so any ideal of fip,is power ofP-' i• Thus R"' p, c"' R-'

p,"

a'"  Rp,= Rp, aN  for some a E Pi, becausePi is pimcipal. Hence, in both cases,

Rp, 'c Rp, + P = aRp, + P =Rp, a + P• However, since a E Cfi,, (6) = { b-'  E ,iE,, l b'-
 js

       '                                            t.regular in R'V ., }, it follows that a E C.,, (P)and so a is a regular element by

.Proposition 1.3.2. Thus we have aRp, a-ig aRp a-i= Rp. It follows that aRp, and P

are both left aR., a-iand right R.,-ideals. Hence aR.,D P by [MMU, (6.4)] and

similarlyR.,a =) P. Since R.,cR., and P are both ideals of R.,, it follows that

Rp, cRp, DP. Therefore Rp, cRp, = aRp, =Rp, a follows.

(2) By (1), Pi RR.,cRp,= R.,a=aR., for some aE.P,. Suppose that cR.,c

Rp,cRp,.Then, by Lemma 1.2.4, there is ab ERp,cRp, such that cRp, g bPi g aPi,

because 9 (c Rp,) = cRp, c-i and Pi = J( Rp, ). So Rp, a-icRp, g Pi. On the other

hand, Rp,cRp,= aRalmplies that Rp, a-icRp,= Rer a contradiction. Hence, cRp,=

Rp,cRp, and similarly Rp,c= Rp,cRp, so that cRp,=Rp, c. Since cRp, c-i== Rp, and

        '1( Rp, )= Pi, we have cPi c-i= Pi and so cPi = Pi c.

                                       '

Theorem 3.1.5. Let R be a Dubrovin valuation'ring of a simple Artinian ring 2. Then

R isfully boundedf and only ffor aay P E Spec(R), P # J(R), thefollowing hold:

 (1) PEG-Spec(R).
                                              '
 (2) P is either lower limit or there is aP,E Spec(R) such thatPi ) P is an

                                                                 '     Archimedeanprime segment`

Proof Suppose that R is fu11y bounded.

(1) Assume that there is a non-Goldie prime ideal C Then we have an exceptional

prime segment, say, P, DCD P, by [BMO, (6)].Ris an n-chain ring by Theorem
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1.2.2 and so is R= R/C. This implies that Rhas a finite Goldie dimension, say, m (S

n). Thus there are non-zero uniform right ideals U, of R such that U, e ... e U. is

an essential right ideal of R.Since R isaprime ring, U,AP,2 U, P,# Oand so

        'there are non-zero il;. E l7;. A ]Pi, where u, E Pi.Set I= uiR + .. .+ u. R. ThenI= aR

for some aE I, because R is Bezout (Theorem 1.2.2) and I = u, RO ... e u. R=

a R is an essential right ideal ofR. We claim that P, DI . On the contrary, suppose

that P, =I, i.e., P,= aR +C Note that O, (C) = R.,= O,(C) by [BMU, (2.2)] so that

C is an ideal of R.,.If C is aprincipal right ideal of R.,,say, C=cR., for some cE

C, then Pi=aRp,+cRp, =bRp, for some bE Pi. It follows from Lemma 3.,1.1 that

                                'Pi=bRp,= Rp,b and so PiD Pi2=) C, which contradicts to the fact that there are no

ideals properly between P, and C (cf. [BMO, (6)]). If C is not a principal right ideal

of Rer theR CP,=Cby Lemma 1.2.8 and so P, = P,2=aPi +CPi= aPi +C

Thus we have a= ap +dfor somepE P, and dE C and a(1-p) = dE C It follows that

aE'  C, because 1-p isaunit of Rp,,which shows I= O,acontradiction. We have

shown that P, =)Iand Iis an essential right ideal of R.Hence R is not bounded,

because there are no ideals properly between P, and C Therefore, any prime ideal of

R is Goldie prime.

(2) Let P E G-Spec(R) and suppose that P is not lower limit. Then there is a P, E

G-Spec(R) such that P,D P is a prime segment, which is not exceptional by (1).

Suppose that this is simple. For any cE P, A C(P), it follows that c P, is an essential

right ideal of R = RIP, which is a Dubrovin valuation ring of R. IP (Corollary 1.2.3).

Suppose that cP,= Pi,i.e.,cP,+P= P,.SincecP, and P are both left cRp, c'i and

right Rp, -ideals (note cRp, c-ig cRp c"i = Rp ), we have either cPiDP or cPigP

by Proposition 1.2.5. The latter case is impossible and so cP, D P. Thus cP, = P and

c-i  e Ot (Pi ) = Rp, follows. This is contradiction, because cE Pi . Hence we have shown

that P,D cP, and cP, is an essential right ideal. Therefore, R is Bot bounded,
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because there are no ideals properly P, and (O). Hence either P is lower 1imit or there

is a P, e G-Spec(R) such that P, DP is an Archimedean prime segment.

       Conversely, suppose that the conditions (1) and (2) hold and let P E Spec(R).

Then P is Goldie prime by (1). Firstly, assume that P is Iower limit, i.e., P = A{ P,I

P, E G-Spec(R) with P, )P}. Then C(P) =v C(P, ) by Lemma 3.1.2. So, for any ce

C(P), we have cE C( Pz)for some X. Then cR )Pz,because cR and Pz are both left

cRc-' and right R-ideals. Hence c R=)Pz # Oin R= RIP, showing thatRis bounded.

                                                               '
Secondly, suppose that the prirne segment P, = P is Archimedean and let cE C(P).

Then, as before, c P, is an essential right ideal of R=RIP and so cP, A C(P) # SZS. Let

de cp, A C(P). Then, by Lemma 3.1.4 (2) and Theorem 1.3.3, cR p cPp dR., =R., d

and dR., D P follows. Therefore, R = RIP is bounded and hence R is fully bounded.

As an application of Theorem 3.1.5, we have the following:

Proposition 3.1.6. Let R be a Dubrovin valuation ring of a simple Artinian ring 9

Then R is locally tnvariantf andonly f it isfully bounded.

Proof. Suppose that R is locally invariant. In order to prove that it is fully bounded, on

the contrary, assume that R is not fully bounded. Then there are prime ideals P, P,

such that either the prime segment P, D P is simple or P,E G-Spec(R), P is a

non-Goldie prime ideal and there are no ideals properly between P, and P. In either

case, we shall prove that there is a regular element cE PiXP. Let ci be any element in

P, XP. If c,R is an essential right ideal, thenc = c, is regular. If c,R is not an essential

right ideaL then there is a right ideal I such that cR e Iis essential. So it follows from

Goldie's theorem that (cR e DP, is also an essential right ideal which is contained in

P, but not in P. So there is aregular element cE (c,ReD P, but not inP by [MR,

(3.3.7)]. Now let cE P,XP such that c is regular. Then cP,= P, c, becauseP,= P(c).
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SinceP, ?cP,= P, cD P, we have cP, =P, , which impliesc-' E Oi(P,)= R., . Hence

Rp, = cRp, gPi , a contradiction. Therefore, R is fully bounded.

       Suppose that R is fu11y bounded. Let cE .J(R) such that c is regular. By the

assumption and Theorem 3.1.5, P(c) = A{ P,l P, E Spec(R) such that P, ) c}, which

is Goldie prime by Proposition 1.2.13. Suppose that P(c) is upper 1imit, i.e., P(c) =

u{P, P,E G-Spec(R) such that P,c P(c)}. Then there is aP,withPp c. This

contradicts the choice of P(c). Hence P(c) D P = u{P" P(c) D P, } is a prime

segment which must be Archimedean by Theorem 3.1.5. Since cE P(c)XP and c is

regular, we have cP(c) = P(c) c by Lemma 3.1.4. Hence R is locally invariant.

       We say that R is invariant if cR c-i = R for any regular element c in R and that

it is of rank n if there are exactly n Goldie prime ideals. From Lemma 3.1.4, we have

Proposition 3.1.7. Suppose that R is Archimedean and is of rank one. Then it is

lnvarlant.

Proof. Let c be any regular element and let c, be any regular element in J(R). Then we

have cRc-i=cciR(cci)-i=R by Lemma 3.1.4, because ci , cc, E J(R)•

3.2. Examples

      We will give several examples of fu11y bounded Dubrovin valuation rings.

          '

Example 3.2.1. Any Dubrovin valuation ring of a simple Artmian ring with finite

dimension over its center is fuIIy bounded.

Example 3.2.2. Any invariant valuation ring of a division ring is fu11y bounded (see

[XKM, (Remarks to Examples 2.1 and 2.4)] for invariant valuation rings of division

rings with infinite dimensions over its centers).
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       In order to give more general examples, we recal1 the skew polynomial ring

2[x,6] over 2 in an indeterminate x, where 6 E Aut(2). Since 2[x,6] is a principal

ideal ring, the maximal ideal P = x2[x,6] is localizable, i.e., T = e[x,o].= ff(x)

c(x)M' 1 f(sc) G 2[x,6] and c(x) E C(P)}, the localization of 2[x,a] at P, is a Noetherian

Dubrovin valuation ring withJ(7r) =xT. Since 2 is a simple Artinian ring, C(P) = {c(x)

e e[x,6] l c(x) = c,+c,x+...+c.x" such that cois a unit in 2}. For any t =f(x)

c(x)-' E T, wheref(x) = f, +f,x+...+f,x' and c(x) = c, +c,x+...+c.x", the map q:

T -> 2 defined by Q (t) = f, c,-'is a ring epimorphism. Now let R be a Dubrovin

valuation ring of 2. Then, by [XKM, (1.6)], R = tp'i (R), the complete inverse image

ofR by Q, is a Dubrovin valuation ring of 2(x,6) (9(x,o) stands for the quotient ring of

2[x,6]). Furthermore, let P = sD iE(sD E Spec(R)). Then P E Spec(R-) and RN IP i

R18Z) by [XKM, (1.6)] and its proof. Thus it follows from [XKM, (1.6)] that R-'  is

fu11y bounded iffR is fu11y bounded. Hence we have

Example 3.2.3. With notation above, suppose that R is a fu11y bounded Dubrovin

valuation ring of 2 and that 6 is of infinite order ([XKM, (Examples 2.1 - 2.6, 2.7 and

2.8)]). Then fi is a fu11y bounded Dubrovin valuation ring of 9(x,6) and e(x,6) is of

infinite dimensional over the center.

       Finally, we give a few remarks on non-fu11y bounded total valuation rings: An

example of a total valuation ring with a simple segment was first constructed by [Mt].

See [BT] for other examples of total valuation rings with simple segments. Dubrovin

constructed an example of a total valuation ring with an exceptional prime segment

([D3])•
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                           CHAPTER4 '

                   Non-commutative v-Bezout rings

      Throughout this chapter, Vwill be a total valuation ring of a division ring K,

i.e., for any nonzero kE K, either kE J7 or k-i E V. Let Qobe the semigroup of

nonnegative rational numbers and 6 be a semigroup homomorphism from Qoto

Aut(pt), the group of automorphism of V, i.e., 6 (r + s) = c(r).6(s) for any r,s E Qo•

Furthermore, R = l7[x",o1rE Q,] isaskew semigroup ring of Q, over JZ, i.e., it is a

ring with left V-basis {x"lr E Q,}. Each element of R is uniquely a finite sum

aix"' +...+akx"kwith a, E V. The multiplication is defined by x"a= 6(r)(a)x"for any a

E V and r E Q,. Since 6 is naturally extended to a semigroup homomorphism from

Q, to Aut(K), we have T= K[x',6Ir E Q,] is a skew semigroup ring ofQ,over K.

      In Section 1, we prove that R = V[xr,o l r E Q,] i's v-Bezout, which is defined

in [Ma] and is a non-commutative version of commutative GCD-domains.

      In Section 2, we give some examples of non--commutative v-Bezout rings with

some types of automorphisms.

4.1. Non- commutative v-Bezout rings

      Let S be an Ore domain with its quotient ring 2 and let I(J) be a right (left) S-

ideal. We use the following notation [MMU]: (S: D, = {g E 2l glg S}, (S: J) , = {g E

2lJg g S}, I, = (S: (S: D,), and .J= (S: (S: .1),),. It is clear that I. (.J) is a right

(left) S-ideal containing I(D, respectively. IfI = I. (J = .J), then it is called a right

aeft? v-ideal. An Ore domain S is called right v-Bezout if I. is a principal for any

finitely generated right ideal I of S. Similarly, we can define left v-Bezout and S is said

to be v-Bezout if it is right v--Bezout as well as left v-Bezout.

      A partially ordered set A with ordering 2 is called an ascending net if for any

Zi, Z2 in A, there is a X E Awith Z,S X (i -- 1, 2). Then we have the following

lemma.
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Lemma 4.1.1. Let A be an ascending net and letRz be an Ore domain with its

guotient division ring KA,for each X E A. Suppose thatR, gR2 ifp SX. SetR=

u{R, 1XE A}andK=u{K, 1XE A}. Then

(1) K is a quotient ring of R which ls a division ring.

(2) IfR, is aBezout ringy'or all X E A, then so is R.

                      '(3) LetP, be a completelyprime ideal of R,, which is localizablefor aay X E A.

    Suppose that P,AR," P, i:leX2p. Then

    (a) P= w{ P, lX E A. } is a completelyprime ideal ofR and is localizable.

    (b) Rp=W{Rz,, lXEA}'

    (C) IfR2,, is a total valuation ringyCor all X E A, then so is R..

      Let N be the set of natural numbers. Then it is considered an ascending net in

                                                           ithe following obvious way: n2m iff mln for any m, n E N. Let R.= V[xS, 6] =

{akxff+ ••• + aixff+ ao l a,EJ7 }. Then R. is considered as a skew polynomial ring

                          '                       l! 1!
over  J7 in the indeterminate x" with x"a = 6(- il)(a)xn for any a EV• Let P." ,J(V)

  .1 .[xi, 6], a cornpletely prime ideal ofR.and it is localizable such that R.,. is a total

                 i
valuation ring of K(xff, 6) (see [BT]). Obviously, R.2 R. and P. = P.AR. if n 2

m. Furthermore, P= J( P')[x', 6l r E Q,] = u{ P.l n E N }. Let R = V[ x', d r E Q,],

                              i
T= K[x", 61r e Q,] and let T.= K[xV, o], be a principal ideal ring for each n E N.

  '
Then it is obvious that R = U..o R, and T= U..o T. . So from Lemma 4.1.1, we

                                                                 'have the following:
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Proposition 4.1.2. (1) P = J(P')[x', c ir E Q,] is localizable andR. is a total

valuation ring with Rp =U Rn,. '

(2) T= K[xr, o1r G Q,] is aBezout ring with its guotient ring K(x', 61r E Q,)•

                              '

      Let 6 be a left T-derivation of V, where T E Aut(J7) and assume that (:, 6) is

compatible, i.e., 5(J(") g .I(V). Let S= J7[x; T, 6] be an Ore extension over Vin an

indeterminatex. Then P :.J( V)[x; T, 6] is localizable and S.,the localization ofS at P,

is a total valuation img (cf. [BT]). Now letf(x), g(x) G S and let I = Si7(x) + Sg(x). Then

S.I= S. a, for some a E l7 and K[x; T, 6] I= K[x; T, 6] b(x), for some b(x) EK[x; :, 6].

There are b E K and b,(x) E S XP with b(x)a-i= bb,(x). With these notations, we

have the following:

Lemma 4.1.3. [Ma, (2.1) and (2.3)]. .I= S.IA K[x; T, 6] I= Sc(x), where c(x) =

                                                   '                                          'b, (x) a E 8

      By using Lemma 4.1.3, we have the following theorem which is inspired by [C,

(35)].

Theorem 4.1.4. Let Vbe a total valuation ring of a division ring K. Then R = l7[x", 6

l r E Qo] is v-Bezout, and it is not Bezoutf V#K

Proof Let I = RLKx) + Rg(x), for somef(x), g(x) e R. There is a natural nurnber m such

thatf(x), g(x) e R. . Set I.= R,f(x) + R.g(x). Then by Lemma 4.1.3, there is c(x) E

R.with R.,. I.AT. I.= R. c(x), where R.,. I. = R.,. a (aE to, T. I.= T.b(x)

(b(x) E T. ), b(x)a"= bb, (x) (bE K, b, (x) E R.X P.) and c(x) = b, (x) a. For any

natural number n with m1n, we have R.,. I.= R.,. a and T. I.= T. b(x) aiid SO ,In=

R.,. I.A T. I.= R.c(x) bY Lemma 4•1•3• Sincef(x), g(x) E R. c(x) gRc(x), it follows
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                                                   ' '1that I Åí. -R.c(x.),. Suppos• e that Ir,= Ra for s• ome oc E .k.r(x', s!r c- Q,). Then or E .k.{(x"n ,

6), the quotient img of T., for some n and we assume that mln. It follows that I. g

         1
RaA K( xn , 6) = R ct and so R c(x) = I g R ec Thus Rc(x) g Ra and hence I=
                mn                                 vn                                        nv
Re(x) follows. IfJ= J,+ J,, where J, and J, are Ieft ideals of R, then it is easy to

Check that .J= ,(,J, + J2)=,(,Ji + ,J,) and so R is left v-Bezout by induction on

generators. Similarly, R is right v-Bezout.

      Now, suppose that R = V[x", 61r E Q,] is left Bezout. Let ct be a non-unit

element in VX{O}. Then there exists h(x) E R such that Ror + Rx = Rh(x). We have ct =

a(x) h(x) and x = b(x) h(x) for some a(x), b(x) E R. Then it follows that h(sc) is constant,

say, h(x) = c and b(x) = b,x for some b, E M Thus 1 = b, 6(1)(c) and so c is unit in JZ.

Then Ra+ Rx = Rh(x) = Rc = R implies that ais unit in V, a contradiction. Hence R is

not left Bezout.

4.2. Examples

      Finally, we wil1 give several examples of skew semigroup ring of Q, over

total valuation rings.

Example 4.2.1 (trivial case, 6= 1). R = l7[x' lr E Q,] is v-Bezout, where Vis any

total valuation ring.

      In order to provide non-trivial examples, let K = F({ Y, }l t E Q) be the rational

function field over a field F in indeterminates { Y,lt E Q}, where Q is the field of

rationals. For any r E Q,, let 6, E Aut(K) determined by; cr, (a) = a for any a E F and

6,(Y,)= Y,., for anytE Q• Furthermore, let v be the valuation of K detemined by

v(a) =O for all aEF and v( Y,)=1 for all tE Q. Then JZ= {k EK1 v(k) 2 O} is a

discrete rank one valuation ring of K. It is easy to see that 6,(to = Vfor any r E Q,
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and o,., = a,.o, . Hence the mapping 6 : Q, -> Aut(V) defined by 6 (r) = a, for

any r E Qo is a semigroup homomorphism.

                            'Example 4.2.2. With the notation and assumption the above, R = J7[x" l r E Q,l is v-

                                                      '                                              'Bezout which is not Bezout.

      In order to get another example which is not discrete rank one valuation ring,

let G = e Z, (r E Q, Z,= Z), the direct sum of the copies Z, which is a totally ordered

abelian group by lexicographic ordering and let K and o,be as in Example 4.2.2. We

define a valuation ofKas follows: v(a) =O for all a E F and v( Y,) = (..., O, 1, O, ...) E

G, the t-th component is 1 and the other components are all zero. Then V= {k E Kl

v(k) ) O} is a valuation ring ofK with infinite rank and J( V) = J(J7)2. It is not hard to

see that 6, (" = JZ for all r E Qo. Hence, we have

Example 4.2.3. R = J7[x' l r E Q,] is v-Bezout, where Vis commutative valuation ring

with infinite rank and J( M = J( v) 2 .

      In order to give an example of non-commutative valuation rings, let be Vo be

any total valuation ring of a division ring K, and G = <g, l r E Q> be a group which is

isomorphic to Q, i.e., g, .g, = g,., for any r, s E Q. Since Gis abelian, the group ring

V, [G] and K,[(n have the same quotient ring K,(G) which is a division ring. As

before, for any r E Q,we defme an automorphisma, of K, (G) as follows: o, (a) = a

for aH a E K, and q(g,) = g,., for any t E Q. Now J( V, )[G] is localizable and V=

V,[G],(.,)[.] is a total valuation ring of K, (G) (see [BMO, (2.6)]). Since 6. (J(E)[G]) =

J(l7)[G], 6, is considered as an automorphism of Vwith o,., = a..o, for any r, s E

Q,. So the mapping 6:Q, -> Aut(J7) given by 6 (r) = e, for anyrE Q, is a

semigroup homomorphism.
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Example 4.2.4. With the notation and assumption the above, R =

Bezout but not Bezout.

nxr lrE Qo] is v--
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              CHAPTER5

Overrings of Non-commutative PrUfer rings

      satisfying a polynomial identity

      In [AD], they defined the concept of non-commutative PrUfer rings in the

context of prime Goldie rings and studied the structure of Priifer rings. In the case

when prime rings satisfying a polynomial identity (PI), Morandi studied PI Pr{ifer rings

under some conditions such as; integral over its center or the center is commutative

PrUfer. Furthermore, Dubrovin [D2] proved that any prime ideal of a PI PrUfer ring is

localizable.

      In Section 1, we describe the properties of ovenings of PI PrUfer rings.

      In Section 2, we describe prime ideals of any overring of a PI PrUfer ring by

using some results in [D2] and [Mo]]

      We refer the readers to [MMU] for elementary properties of Pnifer rings and

Dubrovin valuation rings.

5.1. 0verrings efPI Pnifer rings

      Throughout this chapter, R will be a prime Goldie ring with its quotient ring 2.

LetIbe an additive subgroup of 2. Then the right and left orders ofI are defined to be

O, (I) = {ge el Ig gl }, and O, (I) = {gE e[ gl gl }. We also define I" =

{gE2iIgl gl}), the inverse ofL IfI is a right R-submodule of 2, then I is a

(fractional) right R-ideal if I contains a regular element of 2, and if there is a regular

element d E 2 with dl g R. Left R-ideals are defmed sirnilarly.

      Following [AD], R is called right Pr(fer if for every finitely generated right R-

ideal I, IMiI= R, IIMi = O,(I). A left Prdfer ring is defined similarly. It is proved in

[AD, (1.12)] that R is right Priifer if and only if it is left PrUfer. A ring is called right

(left) Bezout is any finitely generated right (Ieft) ideal is principal. We say that R is a

Dubrovin valuation ring if R is Bezout and RIJ(R) is a simple Artmian ring, where J(R)

is the Jacobson radical ofR. A prime ideal P ofR is said to be localizable if C(P) = {c

E R 1 c is regular mod P} is an Ore set of R. Let P be a non-zero prime ideal of a PI
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PrUfer ring R. Then any element of C(P) is regular, C(P) is localizable and R. is a

Dubrovin valuation ring ([D2]). We write Spec(R) for the set of all prime ideals ofR.

                                                     '
Lemma 5.1.1. Let S be an overring of R. Suppose that S isfl at as a left R-module. Then

S Q. S or Snaturally.

Proof1 For any oc =2s, X t,, where s,, t, E S, we define (p(oc) =Zs, t, . Then there is

a regular element cE R with s, -- c-i s, for some s, E R. From the exact sequence O -->

s -> 2, we derive the exact sequence O -SQ. S- 2 Q. S• Then ct = Zs, Q t, =

Zc-' s, X t,= c-iQ2 s, t, E 2 X. S. So if (p(oc) = O, then O= ]Z)s, t,= c-i(2 s, t,)

and thus ct = O, which shows that rp is one-to-one. It is clear that rp is onto and hence q

is an isomorphism.

      Let I be a right ideal ofR and s E2. Then we use the following notation; s'iI

={r ERIsrEI} which isaright ideal ofR. '

Lemma 5.1.2. Under the same notation and assumption as in Lemma 5.1.1, letI be a

non-zero right ideal of R and lets E S, non-zero. Then (s-iI)S = s-' (IS) = {t ESlst E

IS}.

Pro<l: It is clear that (s-'I)Sg s-' (I S). To prove the converse inclusion, we consider

the exact sequence O -> s-il -> R4' S/I, where si (r) = [sr + I] for alt r ER. Then

since S is a flat left R-module, we have the following exact sequence:

       O -> (s-il)Q. S -->R Q. S ---l-L' i!iXi ,S><ll X. S.

From the exact sequence we derive the following exact sequence:

      o- (s-iI)s --> s ----E-L' -> ,Sl!lll' S,

because (S/I) X. Sg (S X. S)/(I Q, S) cr Sl(IS) by Lemma 5.1.1, which shows that

(s'iI)S2 s"i (I S). Hence (s-iI )S = s-i (I S) fo11ows.
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      A family gr of right ideals of R is called a right Gabriel topology on R if gn

satisfies the following two conditions:

 (i) ifl E gn and r E R, then r-il E ga, and

                                       '
(ii) if IEgy and .I is aright ideal ofR such that a-iul E gn for alla EI , thenJd gn.

      If gr is a right Gabriel topology on R, then we write R, for the right quotient of

R with respect to 7. SinceR is a prime Goldie ring, R, = u{(R:Di1I E ge}, where (R:Di

" {g E 2 1 gl g R}. We refer the readers to [S] for elementary properties of Gabriel

topology.

Proposition 5.1.3. Let S be an overring of R. Suppose that S isflat as a left R-module.

Then gr(E}) = {I: right ideal of R 1 IS = S } is a right Gabriel topology on R andS = Rgr(s).

Proof Let ,J E gn(S) and r E R (r 4 O). Then Rl(r'iD cr (rR +DII implies (r-ibS= S,

i.e., r-'I E gr(S), because IS = S. Next, let I E gn(S) and let Jbe a right ideal ofR such

that (a-'.l)S =Sfor all a E L ThenS2JS 2 2.., a(a-i-1)S = 2].., aS= S• ThUS JS

= S, i.e., J E gn(S). Hence gn(S) is a right Gabriel topology on R.

                           '      To show that S= R,(,), let I E gn(,st. Then S = RS 2 (R:I)i IS ? (.R:Db which

                                                   'implies Ry(,) g S To show the converse inclusion, let s e S. Then S= s-iS= (s-iR)s

by Lemma 5.1.2 and so s-'R E gn(S) and s E (R: s-'R)ig&(s) Hence S= Rgr(s).

                                   .
Corollary 5.1.4. Under the same notation and assumptions as in Proposition 5.1.3, let

I' be a right ideal of S. Then I' = (Z'n R) S.

      Since any overring of a PrUfer ring R is flat as a right R-module as well as a left

R-module, we have

Corollary 5.1.5. Let S be an overring of a Profer ring R. Then there is a right aefP

Gabriel topology gn (gy ' ) on R such that S == Rgr = Rgr) .
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5.2. Prime ideals of overrings of a PI Prtifer ring.

     In this section, we assume that R is a PI PrUfer ring. Note that R. is a Dubrovin

valuation ring for any P E Spec(R) and that any overring ofa PrUfer ring is PrUfer (see

[MMU, (2.6)]).

                                   '
Lemma 5.2.1. Let P E Spec(R) and P, ' e Spec(R. ). Then P,= P, 'A R E Spec(R)

and Rp, =(Rp)p,"'

Proof: Since J((R.).,,)AR. =P, ', we have P, =J((R. ).,,) rAR and so P, E Spec(R)

by [Mo, (1.8)]. Since J( R. ) 2P, ', we have P= J( R. ) r> R2P, and so C(P) p C( Pi )

by [MMU, (17.1)]. To prove that C(P,) g C.,(P, ') ={cuER. Ia is regular mod

P,'}, let cE C(P,)and c6 EP,'for some BE R,.Then there is adE C(P) and Bd E

R, i.e., cPd E P, and so Bd E P,. Thus B E P,' and hence C(P,)g C,, (P,'). This

implies that R., g (R. ).,, . To prove the converse inclusion, we claim that acE C( P, )

for any cuE C..(P, ') andcE C(P) with cxcE R. Assume that (xcr EP, for somerE

       'R. Then cr EP,' and so rG nyA R= P,,because C(P) g C( P,)gC., (ny)• Hence

(xcE C(P, ). Now, letxE (R.).,,.ThenxB E R. for some BEC.,(P, ') and so xSc e

          '
R for some cEC(P) with Pc E R. Since Pc E C(Pl ), we havex ERp,•Hence Rp,=

(R. ).,, follows.

Lemma 5.2.2. LetS be an overring of R and letP' E Spec(S)• Then P ==P' AR E

                    'Spec(R) and R. = Sp••

Proof Since P ==P' A R = J( S.,) A SA R = J( S.,) A R, it follows from [Mo, (1.8)]

that P E Spec(R). Let c E C(P) and assume that cs E P' with s E S. Then there is an I

E gr(S) with xl gR and so cxl g P. Thus xl gP and so x E P', which implies C(P) g

Cs (P'). Hence Rp g Sp,. Since Rp is a Dubrovin valuation ring, there is a P,'e
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Spec(R. ) with S.,= (R. ).,, by Theorem 1.2.6. We put P, =J((R. ),,, )AR. Then P,

= J( S.,) AR =P. Hence R. = R,, = (R. ).,, =S.,by Lemma 5.2.1.

Theorem 5.2.3. LetR be a PIProfer ring and letS be an overring of R. Then Spec(S)

= {PS l P E Spec(R) with PS c S}and S = r'> R. , where P runs over all PE Spec(R)

withPScS.

ProqC Let P E Spec(R) with PS c S and let I' be a maximal right ideal of S with I' R

PS. Then M' = ann,(S/I') = {s E S1 (S(I')s =O} is a maximal ideal ofS and so P, = M'

A R E Spec(R) with R., = S., by Lemma 5.2.2. Because of ,SJt(M' crS.,/(M'S., ) i

2(S/M'), the quotient ring of 51M', we havePS.,g I.,c S.,. So if P, P P, then R.,

=PR., =PS., cS.,, a contradiction Thus P, ?P and so R. p R,, 2Sby [MMU,

(17.1)]. Hence S g AR. , where P runs over all PE Spec(R) with PS c S. Furthermore,

for any PE Spec(R) with PS c S, let P' = J(R. ) A S. Then P' E Spec(S) by [Mo,

(1.8)]. Since P = J(R. ) AR =P' A S, it follows frorn Corollary 5.1.4 that P' = PS.

Hence PS G Spec(S). Conversely, let P' E Spec(S) with S )P'. Then P =P' A R E

Spec(R), P' = PS and R. = S.,by Corollary 5.1.4 and Lemna 5.2.2. Hence S =

A R. by [MMU, (14.6)], where P runs over all PE Spec(R) with PS c S and Spec(S) =

{pE Spec(R) 1 pS c S}.

Corollary 5.2.4. LetR be a PI Pr4Cer ring and let P, E Spec(R) (i -- 1, 2)• Then Pi +

P2=Ror Pi ? P2 or Pi g P2•

Proof Suppose that R ? P,+P, . Let Mbe a maximal ideal of R with Mp P,+P,.

Then P, R. E Spec( R. ) by Theorem 5.2.3 and so either P, R. 2 P, R. or

Pi R. gP, R. by Proposition 1.2.5. Sii}ce C(M) g C( P,) by [MMU, (17.1)], we have

P, RM AR= P,.Hence either Pi 2 P2 or Pi g P2•
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